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Summary 

 

Petrophysical modeling in unconventional reservoirs 

requires tools that take into account their complex mineral 

composition and lack of log information necessary to resolve 
this complexity in detail. We pose the estimation of 

properties of mineral constituents of the rock as a stochastic 

nonlinear optimization problem where a genetic algorithm (a 

type of algorithm in the artificial intelligence spectrum) 
replaces the time-consuming, manual trial-and-error process 

of adjusting properties and fitting the input logs in 

conventional multimineral analysis. The method requires 

interpretative inputs based on prior knowledge and 
experience, but such inputs are provided in the form of 

ranges instead of single property values, facilitating the work 

of the analyst. By testing adaptively thousands of solutions 

and considerably reducing the time needed to fit the input 
logs with a consistent set of properties, it becomes then 

possible to test other scenarios of input data and constituents, 

quantify the uncertainty and non-uniqueness of individual 

parameters, and shed light upon higher-level petrophysical 
questions such as spatial variations in kerogen maturity, 

water resistivity, or clay composition. We illustrate the use 

of the methodology to estimate fractions of constituents for 

the mineralogically complex Bakken Formation and to 
estimate variations of thermal maturity with depth in the 

Marcellus, shale gas Formation. 

 

Introduction 

 

Unconventional reservoirs can vary significantly in their 

mineral composition. Even though the term “shale” is often 

used as a synonym of unconventional reservoirs, these 
mudrocks are a complex mixture of different types of clay, 

quartz, and carbonates. Organic matter in the form of 

kerogen is also present. Identifying the proportion of the 

different constituents of the mixture determines the 
estimated volumes of hydrocarbon (porosity, Sw), the 

deliverability of the host rock (permeability), and its 

geomechanical response to hydraulic fracture stimulation. 
 

Petrophysical multimineral analysis (Mayer and Sibbit, 

1980; Mitchell and Nelson, 1988) is a tool that can help 

relate the complexity of the rock composition to the well log 
measurements by assuming the log response is a linearized 

combination of individual constituents of known properties 

or “end-points”. For simplicity, in this abstract we will refer 

to the properties of the constituents as “mineral constants” 

which also includes fluid properties. Even though the 
assumption of linearity of the log response is usually valid, 

the assumption of known properties is typically the 

exception rather than the norm in unconventional reservoirs 

due to the complexity of the rock mixtures, inconsistencies 
in tabulated properties of the same mineral, uncertain 

kerogen properties, and scarce or unreliable measurements 

of water salinity. Often, due to the limited number of logs 

available, the petrophysicist is forced to create artificial, 
composite minerals (i.e., “matrix”) whose effective 

properties are unknown. When both the fractions of 

constituents and their properties are unknown, the 

multimineral analysis becomes an underdetermined 
nonlinear problem which is currently solved manually by 

trial-and-error. 

 

We pose the problem of estimation of both fractions of 
minerals and their properties as a stochastic nonlinear 

optimization that is solved in two steps with the help of a 

genetic algorithm (a family of algorithms in the artificial 

intelligence toolkit). In the first step, we generate multiple 
trial models for expected ranges of variability of mineral 

constants. Then, we solve the linear equations that 

correspond to each model, keep the model that yields the 

smallest misfit with the input data, modify the other 
solutions adaptively by using genetic rules and imposing 

additional constraints, and repeat the process until an 

acceptable solution is found.  

 
After revisiting the basic concepts and assumptions behind 

multimineral analysis, we explore its limitations and 

introduce our approach based on stochastic nonlinear 

optimization. Finally, we discuss the application of the 
algorithm to the estimation of fractions of constituents in the 

mineralogically complex Bakken Formation and the 

estimation of variations of thermal maturity with depth in the 

Marcellus shale gas. 
 

Multimineral analysis: what is it? 

 
Multimineral analysis is a method to estimate mineral and 

fluid volume fractions present in the reservoir from well log 

measurements. The log response at every depth is assumed 

to be a linear combination of the individual responses of the 
different logging tools to each constituent (mineral 

constants) weighted by its relative volume fraction (Mayer 

and Sibbit, 1980; Mitchell and Nelson, 1988). The 

theoretical log response for each depth can be expressed as 
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Nonlinear multimineral analysis 

 

𝑑 = 𝑪𝑓,  (1) 

 

where 𝑑 the vector of log measurements, 𝑪 is the matrix of 

mineral constants, and 𝑓  is a vector of unknown volume 

fractions of constituents. When solving the system of 

equations (1), we also require the fractions to be positive and 

to add up to 1 (unity constraint). Each of the linear equations 
in expression (1) is called the “tool response” for a particular 

log. If the constituents are known, the system of equations 

(1) can be solved for the volume fractions at each depth 

where log measurements are available.  
 

The adequacy of multimineral analysis to address a 

particular mineral estimation problem depends on whether 

the following assumptions are satisfied: 

• Constituents are known. 

• Mineral constants are known. 

• Log response and mineral constants are linearly related. 

 

The number of volume fractions that can be estimated at 

each depth is limited by the number of well logs available. 
Usually, only the “most important” minerals are modeled to 

be able to achieve a “unique” solution. The more logs we 

have, the more minerals we can solve for. A common 

workflow to estimate volume fractions at a selected depth 
interval along a well is shown in Figure 1. The process starts 

by selecting the minerals and fluids to solve for. Minerals 

can be selected from core data analyses, previous 
petrophysical analyses or any form of prior knowledge or 

experience in the interval of interest. Then, use tabulated 

values (i.e., Hearts et al., 2000; Schon, 2004; Mavko et al., 

2009) or previous knowledge from the area to generate the 

matrix of mineral constants 𝑪  and solve the system of 

equations (1) for volume fractions (one depth a time). Once 

the system of equations is solved for all the depths of 
interest, calculate modeled logs. The fit between modeled 

and measured logs is performed visually in the computer 

screen and, if needed, the petrophysicist manually adjusts the 

mineral constants related to logs where the largest 
mismatches are observed. All steps above are repeated in a 

trial-and-error fashion until the fit is “acceptable” and the 

volumes fractions are “reasonable”. 

 
Limitations of multimineral analysis 

 

The limitations of the method arise when the main 

assumptions are not satisfied.  The limitations that our 
proposed method will address are the following: 

 

1. Unknown mineral constants: Often, the log response to 

some pure constituents is well known and indeed can be 
found in tables in the literature and software manuals. 

Problems arise, however, when different tables report 

different values or when the range of variability of a mineral 

constant (in clays, for instance) is so large that, in practice, 
the constant becomes another unknown in the analysis, 

making equation (1) nonlinear due to the coupling between 

fractions and mineral constants.  

 
In addition to the constants related to the solid portion of the 

rock, fluid constants (like water resistivity) obtained from 

specific laboratory analyses may not always be available or 

may vary across the field. Errors in fluid constants may 
result in important variations in volumes of water and 

hydrocarbons. 

 

 

Figure 1. Conventional multimineral analysis to estimate fractions 

of constituents. The matrix of mineral constants is adjusted 

manually by trial-and-error until an acceptable match is obtained.  

 

2. More unknown minerals than logs available: In some 

unconventional reservoirs, even if we know the constants of 

all minerals in the rock, the number of available well logs 
may not be sufficient to solve for all of them. In this case, an 

experienced petrophysicist will introduce “pseudo-

minerals” (that may be called “matrix” or “shale” or named 

after a dominant mineral) by mixing some of the actual 
original minerals to reduce the number of unknowns. 

However, the uncertainty in the constants of these new 

“pseudo-minerals” can also be large. 

 
3. Manual solution of a complex undetermined problem: 

Since all constants and volumes are related through the 

system of equations (1), changes in one constant will likely 

affect the volume fractions of all constituents and therefore, 
we may also need to adjust the constants we thought we 

knew well. The coupling of all variables makes this trial-

and-error process (Figure 1) time consuming, tedious, and 

extremely dependent on the experience of the petrophysicist. 
Besides, there is a limit on the number of combinations that 

even an experienced petrophysicist can test to solve the 

(nonlinear) system of equations (1) by trial-and-error. 

 

Nonlinear multimineral analysis using genetic 

optimization 

 

As explained before, when mineral constants are also 
unknown, the system of equations (1) becomes not only 
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Nonlinear multimineral analysis 

nonlinear but also undetermined. For a given set of log 
measurements, the less we know about the constants, the 

more underdetermined and nonlinear equation (1) becomes.  

 

Besides using as much information as we can about the 
constants of constituents, underdetermination in equation (1) 

is addressed by analyzing more depths simultaneously and 

assuming that the constants do not change within the interval 

of interest. As long as the system of equations at each depth 
is overdetermined in the volume fractions, each additional 

depth we consider will add more equations than unknowns 

to the overall problem. Adding more depths will transform 

the system of equations (1) into an overdetermined one.  
 

To address the nonlinear aspect of the problem due to the 

multiplicative nature of the unknowns, we separate the 

estimation of constants from the estimation of volume 
fractions using a genetic algorithm (GA) (Goldberg, 1989). 

The GA generates sets of candidate values for the constants; 

then, we use least squares to estimate volume fractions for 

each candidate at every depth. Candidates are rated by 
several measures (i.e., how well the logs calculated from 

their estimated volume fractions match the measured logs), 

and the GA iteratively optimizes candidates over several 

generations (or iterations) by propagating good mineral 
constant values from one generation to the next. 

 

Figure 2 shows the workflow for our proposed nonlinear 

multimineral analysis. Unlike the process outlined in Figure 
1, in this case, the process starts by defining ranges of 

variability and initial values of the constants for a given 

depth range and generating N random matrices 𝑪 (equation 

1). Then, we solve N systems of linear equations, compute 

the corresponding modeled logs, and calculate the misfits 

between measured and models logs. The solution with the 
smallest misfit is kept from one iteration to the next 

(ensuring improvement in the iterative process) and the other 

matrices are adjusted adaptively by the generic algorithm to 

generate a new set of trial models. The process is repeated M 
times (for a total for N x M tested models) until no changes 

are observed for “several” iterations. There is no guarantee, 

however, that this solution represents a global minimum for 

the optimization problem. If readjustment of the input ranges 
is needed, the process is repeated. Many models can be 

tested in a short amount of time. If N = M = 1, the process is 

reduced to conventional multimineral analysis since no 

automatic optimization is performed. Due to the severe non-
uniqueness of the solutions, careful review by the 

petrophysicist and calibration with independent information 

are both crucial to make sure these solutions make sense.  

 
Any constraint we add in the form of additional equations or 

limits in the range of variability of the constants will 

contribute to finding a more robust solution. Examples of 

these constraints are theoretical effective media bounds of 

elastic moduli from rock physics, volumetric limits for 
constituents, limits on porosity, and low-resolution trends 

from mud logs or x-ray diffraction (XRD) lab data.   

 

 

Figure 2. Nonlinear multimineral analysis to estimate fractions and 

mineral constants. Different matrices of constants are adjusted 

automatically until an acceptable match is obtained. 

 

Applications to unconventional reservoirs 

 

Estimation of lithology mixtures in the Bakken Formation. 
The output of the nonlinear multimineral analysis consists of 

two parts: volume fractions and updated mineral constants. 

As explained above, if the constituents exceed the number of 
available logs, the constituents must be grouped but then, the 

properties of the mixtures that result are uncertain. For 

instance, in the Bakken Formation in the Williston Basin 

(North Dakota), XRD data show a complex mineralogy that 
consists of dolomite, calcite, “quartz” (which is typically a 

mixture of pure quartz, K-feldspar, and albite), seven types 

of clay (predominantly illite) grouped under a category 

called “shale”, pyrite, and kerogen. The result of the 
multimineral analysis in this mixed mineralogy scenario is 

shown in Figure 3. In this case, the input logs consisted of 

conductivity, gamma ray, neutron-porosity, density, and 

volumetric photoelectric factor U. Three different models (1, 
2, and 3) of five constituents each were used to describe the 

interval of interest. Another rock category called “matrix” (a 

mixture of dolomite and quartz) was defined in the Upper 

Bakken Shale interval (model 2) to be able to solve for 
kerogen using the same five logs. Since pyrite is not 

explicitly modeled, the optimization will adjust for that and 

other rocks may end up “heavier” than they actually are after 

the optimization. 
 

The initial matrix (created by the petrophysicist) and the 

final matrix (estimated by the method) for model 2 in the 

Upper Bakken Shale, are shown in Figure 4. The properties 
of the mixed minerals (“quartz” and “shale”) are initially 

uncertain but the optimization yields reasonable values that 

produce a good match between measured and modeled logs 

(Figure 3). Depending on the range of variability allowed for 
each constant, some of them don’t change during the 

optimization while others may depart considerably from 
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Nonlinear multimineral analysis 

their initial guesses. More variability is allowed for the more 
uncertain mineral constants.  

 

Figure 3. Result of multimineral analysis in the Bakken Formation. 

The good agreement between measured (red) and modeled (blue) 

logs indicates that the estimated fractions and mineral constants are 

plausible.  

 

Figure 4. Matrices of mineral constants before and after the 

optimization. Cells in red indicate constants whose values have 

changed more than 50% from the initial value.  

 

Determination of kerogen maturity variability in the 

Marcellus Formation. When nonlinear multimineral 

analysis is performed in different wells within the same 
interval of interest, we can also analyze the spatial variability 

in the mineral constants of the resultant matrix related to 

measurements (e.g. kerogen density) that may not be 

available across the whole area of interest. Figure 5 shows 

an example of this application in the Marcellus Formation in 

the Northern Pennsylvania region. In this case, we 
performed nonlinear multimineral analysis in seven wells 

that penetrated the Lower Marcellus at measured depths that 

range from 350 m to 1800 m. Same mineral constants were   

used to initiate the optimizations in individual wells. The 
modeled kerogen density from the final matrix of optimized 

coefficients for each well was compared to measurements of 
thermal maturity Ro from vitrinite reflectance available at 

the same wells. As Figure 5 (left) shows, thermal maturity 

increases with depth. The kerogen density estimated with 

our method, as expected, also increases with depth (not 
shown) and exhibits a high correlation with the measured 

thermal maturity, as shown in Figure 5 (right). This result 

indicates that modeled kerogen density can be used to 

estimate variations in thermal maturity with depth from log 
data using wells where this measurement is not available. 

 

 

Figure 5. Thermal maturity from vitrinite reflectance Ro for the 

Marcellus Formation. Left: Variation of Ro vs depth. Right: 

Correlation of modeled kerogen density vs Ro.  

 
Conclusions 

 

We introduced a fundamental modification to the 

conventional petrophysical multimineral analysis that allows 
to expedite the estimation of mineral constants (for solids 

and fluids) in areas where such constants are uncertain, a 

common problem in unconventional reservoirs.  

 
Even if only one coefficient is unknown, the conventional 

linear multimineral analysis becomes nonlinear and this 

nonlinearity is addressed by using a genetic algorithm. The 

process automates the time-consuming, manual, trial-and-
error process of estimating constants and generates a 

multimineral solution that predicts the input logs and 

estimates the fractions of fluids and minerals present in the 

rock. 
 

The automated, fast nature of the proposed method allows 

the petrophysicist to explore different assumptions and 

estimate spatial variations in important parameters such as 
kerogen maturity, water resistivity, and/or clay composition. 

As with any other petrophysical analysis tool, the judgment 

of the petrophysicist and calibration with independent data 

are still fundamental to ensure the solutions are adequate for 
the problem we are solving. 
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