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Summary
Rock composition can be related to conventional well logs through theoretical equations and petrophysical endpoints. Multimineral 
analysis is a formation evaluation tool that uses inversions to quantify rock composition from well logs. However, because of data errors 
and the multivariate selection of petrophysical endpoints, solutions from the multimineral analysis are nonunique. Many plausible reali-
zations exhibit comparable data misfits. Therefore, the uncertainties in rock composition and petrophysical endpoints must be quantified 
but cannot be fulfilled by deterministic solvers. Stochastic Bayesian methods have been applied to assess the uncertainties, but the high 
run time, tedious parameter tuning, and need for specific prior information hinder their practical use. We implement Markov chain Monte 
Carlo with ensemble samplers (MCMCES) to assess the uncertainties of rock composition or petrophysical endpoints in the Bayesian 
framework. The resultant posterior probability density functions (PDFs) quantify the uncertainties. Our method has fewer tuning pa-
rameters and is more efficient in convergence than the conventional random walk Markov chain Monte Carlo (MCMC) methods in 
high-dimensional problems. We present two independent applications of MCMCES in multimineral analysis. We first apply MCMCES 
to assess the uncertainties in volume fractions with a suite of well logs and petrophysical endpoints. However, defining the petrophysical 
endpoints can be challenging in complex geological settings because the values of standard endpoints may not be optimal. Next, we use 
MCMCES to estimate petrophysical endpoints’ posterior PDFs when the endpoints are uncertain. Our methods provide posterior volume-
fraction or petrophysical-endpoint realizations for interpreters to evaluate multimineral solutions. We demonstrate our approach with 
synthetic and field examples. Reproducible results are supplemented with the paper.

Introduction
Estimating the rock composition, such as mineral volume fractions, porosity, and fluid saturations, is essential to hydrocarbon reservoir 
characterization and development. The emerging need for CO2 sequestration also calls for a better understanding of rock composition for 
site assessment as the injected CO2 interacts with host rock for mineral trapping (Benson and Cole 2008; Ajayi et al. 2019). Multimineral 
analysis is a formation evaluation tool using conventional well logs to quantify rock composition (or constituent volume fractions). Mayer 
and Sibbit (1980) optimize rock composition by minimizing the misfits between measured logs and theoretical values. Quirein et al. 
(1986) propose linear mixing approximations between well logs and rock composition through a set of petrophysical endpoints (endpoints 
hereafter). The linear mixing assumption significantly reduces the computational time in optimization. Early multimineral developments 
mostly rely on deterministic optimizations that obtain solutions efficiently. However, because of data errors and uncertainties of petro-
physical models, multimineral results are nonunique. If available, multimineral solutions are recommended to reconcile with core data, 
mud logs, and local geological knowledge. Assessing the uncertainties is critical but cannot be easily achieved by deterministic methods. 
Therefore, using stochastic methods helps to evaluate the solutions associated with the uncertainties.

There have been stochastic approaches applied to multimineral analysis to assess the uncertainties in rock composition. For instance, 
Aldred (2018) uses the Monte Carlo processing that randomly draws samples from a probability distribution function to approximate the 
desired function. The uncertainty assessment can be achieved by finding many realizations that fit the data. However, the exhaustive 
Monte Carlo sampling may not explore the model space efficiently, especially for high-dimensional problems, thereby costing significant 
computational time. In addition, the assumption of parameter distributions, such as normal or triangle, is generally required. The MCMC 
method in the Bayesian framework provides an alternate approach to random sampling high-dimensional probability distributions to 
estimate posterior PDFs. The resultant posterior PDFs are proportional to the known function, thereby quantifying the uncertainties. A 
random walker MCMC approach is formulated by Spalburg (2004), but the application is a low-dimension implementation that only 
focuses on porosity, net-to-gross ratio, and saturation. Deng et al. (2019, 2020) implement a comprehensive MCMC to estimate rock 
composition with associated uncertainties for thinly bedded formations. However, their approach generally requires assuming prior nor-
mal distributions to assist convergence. In addition, to account for thinly bedded formations, the multimineral model implemented in 
Deng et al. (2019) incorporates nonlinear nuclear log responses, which costs considerable computing time (approximately 1 minute per 
depth sample). Therefore, a more practical and robust MCMC method for estimating uncertainties in rock composition is needed.

In addition to rock composition, endpoint selection is another challenge in multimineral analysis. Faithful endpoint selection leads to 
reasonable volume-fraction inversion. Even though endpoints are commonly treated as known parameters, the standard values of end-
points may not be optimal, especially in complex geological settings where the formation has more constituents than the number of well 
logs. In practice, the solutions are reconciled with other available information by altering tool responses or endpoints iteratively. However, 
the tedious heuristic iteration to the best results only means the best that one can achieve in the allotted time. In addition, there can be 
variations in endpoints from place to place, which may contain valuable geological information. Michelena et al. (2020) employ a genetic 
algorithm to solve the rock composition and endpoints from well-log data simultaneously. Their field example shows that the change in 
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kerogen grain density from different wells may indicate the variation in the thermal maturity of kerogen. However, the uncertainties asso-
ciated with endpoints have not been explored.

We use MCMCES in the Bayesian framework in two independent applications, rock composition or endpoint inversion. MCMCES 
provides efficient convergence in high-dimensional problems with fewer tuning parameters than the conventional MCMC method. 
Furthermore, the linear mixing model simulated by MCMCES allows for efficient estimation of posterior probability distributions without 
detailed prior information. Given the advantage of assessing uncertainties, optimizing Bayesian inversion can be challenging. Therefore, 
this paper aims to illustrate comprehensive implementations of Bayesian inversions for multimineral analysis. The paper is organized as 
follows. We first review multimineral analysis and the sources of uncertainties. Then, we explain how to use MCMCES to address the 
uncertainties. Finally, we demonstrate our method with synthetic and field examples for volume fraction and endpoint applications and 
provide reproducible results.

Review of Multimineral Analysis and Its Uncertainty
In multimineral analysis, rock composition is inverted jointly from the conventional well logs through a set of theoretical equations and 
endpoints. The typical input data are a triple- or quad-combo logging set that may include gamma ray (GR), resistivity (RT), neutron 
porosity (NPHI), bulk density (RHOB), photoelectric absorption factor (PEF), and sonic slowness (DT) logs. To demonstrate our method, 
we use the linear mixing model (Quirein et al. 1986; Mitchell and Nelson 1988; Doveton 1994) that has already been implemented in 
commercial software for theoretical forward modeling and inversion. In the absence of gas in the formation, conventional well logs (‍

!

d ‍) 
at every depth can be linearly related through an endpoint matrix (G) and rock composition (‍

!

V ‍), given by
where ‍

!

V ‍ is an N by one vector of constituent volume fractions, given by

	﻿‍
!

V =
�
V1 V2 : : : Vi

�T ,‍� (2)

where Vi is the volume fraction of the ith constituent and T denotes transpose. N represents the number of constituents considered in the 
analysis. In practice, resistivity is linearized as near-wellbore square root conductivity (CX) through the Archie equation, where the poros-
ity and saturation exponents are assumed to be two (Doveton 1994). A disperse shale model for resistivity is assumed if clay minerals are 
present. Also, the linear superposition is used for the volumetric cross section (U) derived from the multiplication of PEF and RHOB.

The inverse problem is solved in a depth-by-depth fashion and is subject to the unity equation, which is expressed as

	﻿‍
PN

i=1 Vi = 1.‍� (3)

In addition, each constituent volume fraction must be greater than zero and less than unity, as follows

	﻿‍ 0 � Vi � 1.‍� (4)

As expressed in Eq. 1, preconditioning well log data (d) and selecting proper endpoints (G) for each constituent are critical steps to esti-
mate the rock composition (‍

!

V ‍) correctly. However, both have associated uncertainties. For instance, well log data may have measurement 
errors because of borehole conditions, calibration, operational issues, etc. Therefore, one must account for the data errors in the inversion 
to avoid obtaining erroneous solutions by overfitting the data.

In practice, using well-log crossplots can help to approximate endpoints from the data. However, the endpoints can be uncertain in 
some situations. First, even though most common minerals have suggested endpoint values, there are variations. For instance, the density 
of quartz may range from 2.64 to 2.68 g/cm3 as the mineral may not be in its pure compositional form in the study interval. The change 
in endpoints from place to place may provide important insights into geology (Michelena et al. 2020). Second, some endpoints do not 
have exact values but ranges. For instance, clay GR can range from tens of API to a few hundreds of API, depending on the radioactive 
component in the clay composite. In such a case, without local knowledge, estimating appropriate endpoints can be a time-consuming 
process, typically done by a trial-and-error approach.

Furthermore, the number of constituents in the formation is generally greater than the number of available well logs in a complex 
geological setting. Therefore, grouping constituents with trace volume fractions or similar properties is common to make the inverse 
problem well determined (Quirein et al. 1986). For example, one may group quartz, K-feldspar, and plagioclase into a category of clastics. 
However, after grouping, the collective endpoints of the mixture are different from their standard values. In addition, the optimal end-
points may be from the averaging of several consecutive layers for thinly bedded formations because of the limited vertical resolutions of 
well-log data. Therefore, the endpoints must be somewhat adjusted for optimal inversion in most field cases, but their uncertainties cannot 
be easily evaluated in current commercial implementations of multimineral inversion.

In addition to the uncertainties in data and endpoints, the inverse problem can be ill-conditioned if there is a high similarity between 
constituent endpoints—the high similarity results in a high condition number of the matrix (G). Thus, the uncertainties are higher for the 
constituents with similar endpoints as many realizations result in comparable data misfits. For instance, resolving quartz and plagioclase 
can be difficult because they have similar densities, low gamma ray reading, low neutron porosity, etc., even if the inverse problem is well 
determined. Cheng et  al. (2022) show uncertainties in mineral volume fractions, resulting in violations in rock-physics models. 
Furthermore, the uncertainties are not constant along depths but a function of data errors, rock composition, and the weighting of well 
logs/equations. Therefore, understanding and accounting for this mathematical limitation embedded in the multimineral analysis are 
critical. However, the imposed constraints (Eqs. 3 and 4) increase the difficulty of estimating the uncertainties analytically. Hence, we 
propose nonlinear stochastic methods in endpoints to assist in assessing the uncertainties of endpoints from well-log data. The next sec-
tion demonstrates how to evaluate the uncertainties numerically using the Bayesian inversion.

Bayesian Inversion
Bayesian statistics or inversion can translate the uncertainties in the physical model and data into the computed functions. Bayes’ theorem 
can be formulated as

D
ow

nloaded from
 http://onepetro.org/R

EE/article-pdf/doi/10.2118/210576-PA/2700070/spe-210576-pa.pdf/1 by C
olorado School of M

ines user on 09 August 2022



2022 SPE Reservoir Evaluation & Engineering 3

	﻿‍
P

�
� | d

�
=
P

�
d ˇ

�
�
P

�
�

�

P
�
d
� ,

‍�
(5)

where d indicates the data, θ is the model parameter, P(θ|d) represents the posterior PDF given the data (d), P(d|θ) is the likelihood func-
tion given the model parameter (θ), P(θ) is the prior information, and P(d) represents the evidence. Prior information describes our belief 
and uncertainty on the model parameter before seeing the data. Bayes’ theorem updates the prior information through the likelihood 
function based on the observed data. MCMC is a computational tool to perform Bayesian statistics and approximates the posterior PDF 
that expresses the uncertainty after seeing the data. The resultant posterior PDF is commonly displayed as a histogram and described by 
the mean, median, and standard deviation (STD in figures) to quantify the uncertainty. The evidence term (P(d)) represents the probability 
of all possible models. P(d) usually can be eliminated if using MCMC sampling. Therefore, the prior information and likelihood function 
are the two primary functions performing MCMC.

Unlike Monte Carlo sampling methods that draw independent samples from the model distribution, the MCMC method draws samples 
where the next sample depends on the existing sample, called a Markov chain (a chain hereafter). According to the neighborhood transi-
tion probabilities, the chain moves from state to state on each iteration (Shonkwiler and Mendivil 2009). Each chain is independent and 
can be seen as a series of walker steps exploring the model space. There are different approaches in MCMC depending on how to propose 
the next step in a chain. For instance, random walk Metropolis-Hastings MCMC (Metropolis et al. 1953; Hastings 1970; Tierney 1994) 
that draws samples from symmetric proposal function is a common approach for performing Bayesian statistics. On the other hand, 
Hamiltonian or hybrid Monte Carlo (Duane et al. 1987) uses gradient information for the continuous space to avoid the basic random walk 
behavior. Moreover, Hamiltonian or hybrid Monte Carlo reduces the correlation between successive sampled states by proposing moves 
to distant states, requiring fewer chain samples to approximate Bayesian integrals. However, both methods require tedious tuning to reach 
optimal results, especially in high-dimensional problems.

This paper employs the MCMCES (or affine-invariant ensemble samplers) (Goodman and Weare 2010; Forman-Mackey et al. 2013; 
Grinsted 2020) to estimate the posterior PDFs. The main difference from other MCMC methods is the step proposal. Unlike the random 
walk method with independent walkers, the ensemble method uses ensemble walkers to automatically generate a properly tuned proposal 
distribution from the ensemble (Hogg and Foreman-Mackey 2018). The walkers are first randomly distributed within the preset ranges in 
the model space. To update the jth walker (‍Xj‍), MCMCES selects a complementary walker Y and proposes a new step (‍

�

X ‍), given by

	﻿‍
�

X = ZXj +
�
1 – Z

�
Y,‍� (6)

where Z is a real-valued stretching variable that defines how far the walker Xj to a new position is along the line connecting Xj to Y (Huijser 
et al. 2022). The proposed ‍

�

X ‍ is accepted to replace Xj with the probability (p), given by

	﻿‍

p
�
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(7)

where n represents the number of model parameters and π(X) indicates the target density function. Eq. 7 demonstrates a Metropolis-
Hastings type of acceptance probability that depends on the ratio of the target densities at the current and proposed steps. Therefore, 
MCMCES makes a multivariate proposal for each walker at each iteration, given a scaled difference in position by parameters between 
the current walker and another randomly selected walker. The ensemble-tuned proposal distribution includes gauging the step sizes and 
directions for the new proposal. For more details on MCMCES, see Goodman and Weare (2010).

Compared with conventional MCMC methods, random walk Metropolis-Hastings, for instance, requires tuning the proposal covari-
ance matrix to optimize the posterior results. In addition, random walk Metropolis-Hastings may have ~n2 tuning parameters for a prob-
lem with n model parameters. We find that fewer tuning parameters and fast convergence in high-dimensional problems are the main 
advantages of MCMCES over other methods. However, MCMCES may not be applicable when the number of model parameters is 
greater than 50 (Huijser et al. 2022).

Our MCMCES application has six tuning parameters, the precision constant, the number of walkers (chains), steps per walker (chain), 
burn-in, step size, and thinning regardless of the model dimensions. The precision constant is the most important parameter among the 
tuning parameters, determining how precise the target distribution is. The precision constant is the denominator of a likelihood func-
tion—a smaller constant aims for distributions with smaller data misfits. Hence, knowing the data’s noise level is key to determining the 
value of the precision constant. The number of walkers defines the number of independent Markov chains used to sample the model space. 
MCMCES requires a complementary ensemble of walkers to tune the proposal distribution. Only a few walkers are not sufficient to gen-
erate a proper proposal distribution. However, employing many ensemble walkers may sample the model space thoroughly but costs high 
computational time. One hundred ensemble walkers are typically appropriate and are used for the examples in this paper. The steps per 
walker define how long a chain is. A chain includes the initial random state evolving to convergence or stationary distributions. A longer 
chain records more statistics but also costs more computing time. Burn-in represents a process to discard the steps of a chain from the 
initial state before reaching the stationary distribution. For example, a burn-in of 0.5 means the first 50% of steps are discarded, and only 
the last 50% of steps are recorded for the posterior PDF. The step size (as Z in Eq. 6) determines the distance of random proposals for the 
next chain step. Because the ensembles automatically tune the proposal distribution, the step size in MCMCES is a low-maintenance 
parameter. A step size of 5 is used for our examples. Finally, we have a common option for keeping every kth sample to reduce the auto-
correlation between steps as “thinning,” where k is a positive integer. However, Link and Eaton (2012) find that the thinning process may 
not efficiently help the convergence or autocorrelation. Therefore, thinning is set to one (no thinning) for the examples in the paper. 
Thinning can be used for applications that require many steps (>5,000) to converge, saving the computer memory but costing k times of 
computing.

Diagnosing and optimizing Bayesian inversion can be challenging. Therefore, we present comprehensive diagnostic panels for 
every example shown in this paper to ensure the chains function properly. First, trace plots of combined chains illustrate how chains 
evolve along with steps. We use trace plots to determine how many steps per walker are needed and the burn-in fraction and identify 
convergence. After convergence, further steps are required to obtain samples for posterior inference. More steps gather more accurate 
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posterior PDF estimates and need more time to compute. The final posterior PDF is the collective posterior PDFs from all the chains 
after burn-in. Next, autocorrelation is an important measurement to gauge the efficiency of a chain. If an MCMC chain is strongly 
autocorrelated, the chain produces clumpy samples unrepresentative of the true underlying PDF. A good chain should have rapid mix-
ing as the stationary distribution is reached quickly from an arbitrary position, thereby having a shorter autocorrelation time. In addi-
tion, the acceptance rate is another heuristic proxy statistic to diagnose the efficiency of chains. The acceptance rate is computed from 
the ratio of accepted steps over the total proposed steps. If the acceptance rate is too high, the chains accept most proposed steps, 
indicating the step sizes are too small and vice versa. For best performance in high-dimensional problems with Metropolis algorithms, 
the optimal acceptance rate is 0.234 (Gelman et al. 1997). However, the range from 0.25 to 0.5 is generally acceptable (Hogg and 
Foreman-Mackey 2018).

Note that a chain only accepts proposed steps inside the prior limits—inaccurate prior information results in erroneous posterior solu-
tions. In addition, accurate prior information, such as narrow search limits with a normal distribution that centers at the most probable 
solutions, helps the chains converge quickly to reliable posterior PDFs. For instance, a normal prior distribution initiates more chains 
around the targeted distribution, thereby costing fewer steps to reach convergence. However, such accurate assumptions may not be avail-
able in most field applications. Our MCMCES applications only require reasonable upper and lower search limits with equally distributed 
probabilities (random distributions) for prior information. After evaluating the likelihood function, the posterior PDFs estimated in the 
following examples are shown in probability histograms. The most probable solutions are expressed by means and STDs. This paper 
shows the posterior PDFs as color histograms in probability for demonstration purposes. However, the uncertainty statistics can also be 
presented in percentiles or error bars.

Fig. 1 depicts the workflow of our method. We develop two separate MCMCES applications for multimineral analysis. First, we 
recommend assessing the posterior PDFs in endpoints to evaluate the uncertainties from well-log data. Then, the validated endpoints 
compute the posterior PDFs in volume fractions. Depending on the goal of the Bayesian inversion, the model parameter (θ) in Eq. 5 
can be the volume fraction (‍

!

V ‍), which is a linear simulation, or the endpoints (G), which is a nonlinear simulation. Iteration of our 
method can be done by changing the search limits or precision constant to optimize the results. The following sections demonstrate 
the two different applications with synthetic and field examples. The model space of volume fractions is linear and thereby easier to 
illustrate than the model space of endpoints. Thus, we first present our method for estimating the posterior PDFs in volume 
fractions.

Fig. 1—The suggested workflow for MCMCES applications in multimineral analysis. The workflow starts with estimating the 
uncertainties in endpoints to identify the most probable endpoint matrices. After determining the endpoints, we assess the 
uncertainties in volume fractions. σ represents the precision constant to determine the precision of the targeted distributions. The 
two applications are independent and can be applied separately.

Evaluating computational time is a critical factor for Monte Carlo methods to be practical. The time estimated for the examples is 
based on a Windows 10 desktop with an i7 CPU at 3.47 GHz and 24 GB memory. MCMCES can be programmed with parallel computa-
tion by separating the ensembles into different subsets. However, parallel computation is not implemented in our codes for demonstration 
purposes.

Estimation of Uncertainty in Volume Fractions
We present a synthetic case with three constituents and a field example of a carbonate reservoir using a quad-combo logging set. MCMCES 
is applied to the volume fractions (‍

!

V ‍), while the endpoints (G) are constants in these applications. We use the linear mixing law (Eq. 1) 
for simplicity and practical purpose, which is also a well-accepted approach and demands less computational time. However, the linear 
approximation is not a requirement for employing MCMCES. Our method can potentially be applied to nonlinear models (Heidari et al. 
2012) as well.

Synthetic Data Example. We illustrate our method with a simple synthetic example with a one-depth sample of three constituents (clay, 
quartz, and water). This model helps to illustrate how MCMCES samples the model space to assess the uncertainties in volume fractions. 
The simulated well log data are NPHI and RHOB using Eq. 1 with 2% random noises. The endpoints used in this example are NPHI [0.35, 
−0.02, 1.0] (v/v) and RHOB [2.79, 2.65, 1.0] (g/cm3) for clay, quartz, and water, respectively. The unity is an additional equation (Eq. 3) 
to ensure the inverse problem is well-determined and the solutions are realistic.

The likelihood function (p( ‍
!

d ‍ | ‍
!

V ‍)) for estimating the posterior PDF in volume fractions at every depth is expressed by
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where σ is the precision constant determining the acceptable misfit. The term in the exponential square bracket represents the evaluation 
of the data misfit from a given set of volume fractions. The proposed step is accepted in each chain if the resultant misfit is lower than the 
current step. If the misfit is higher, the step can only be acceptable by a probability determined from the Metropolis-Hastings algorithm 
(Eq. 7). When the misfit is close to zero, the likelihood function is close to one. Thus, the targeted distribution is stationary steps around 
one to determine the convergence in a trace plot.

First, a grid search approach is performed to illustrate the model space of the volume fractions, as shown in Fig. 2. The grid search 
returns the misfits of quartz and clay combinations (VQTZ and VCLY) from 0.2 to 0.6 in a 0.005 spacing where the water volume fractions 
are computed from 1 – (VQTZ + VCLY). The three axes represent quartz, clay, and water volume fractions. The colored surface in Fig. 2 
illustrates the misfits of combinations with the sums of three-volume fractions equaling one. The oval shape of the misfits depicts the 
different uncertainties in volume fractions. The uncertainty in the vertical axis representing the water content is smaller than the other two 
horizontal axes (quartz and clay). The uneven uncertainties result from the values in endpoints as quartz and clay have greater similarity 
in RHOB and NPHI than water. Because of the data errors, the correct solution is away from the minimum misfit that the deterministic 
inversion finds. Therefore, finding plausible realizations within an acceptable misfit is more reasonable than finding a single solution with 
the lowest misfit. The Bayesian inversion draws samples from the model space and maps the posterior distributions with the occurrence/
probability of these realizations proportional to misfits’ absolute values.

Fig. 2—The model space of the synthetic composite with three constituents (quartz, clay, and water). The surface represents the 
combinations tested by a grid search approach. The quartz and clay volume fractions (VQTZ and VCLY) are evaluated from 0.2 to 
0.6 with a spacing of 0.005, and the water volume fraction is estimated from (1 – VQTZ – VCLY). Only the sums of three constituent 
volume fractions equaling one are shown. The colors on the surface illustrate the misfits of the evaluated combinations.

Our method assumes random distributions within searching ranges for the prior information. The broadest range for the volume fractions 
is [0, 1]. This example employs 100 ensemble walkers randomly deployed in the model space. Each walker takes 500 steps. Trace plots of 
the combined steps are shown in Fig. 3a. The first row of Fig. 3a illustrates the likelihood function decreasing from high initial values to 
around one as the steps increase. Rows 2–4 of Fig. 3a show the corresponding volume fraction trace plots. The burn-in of 0.3 is determined 
where the likelihood function has reached the target distribution and the volume fractions converge. The posterior PDFs are the solutions 
after burn-in. Fig. 3b shows the autocorrelations of each model parameter. The rapid decreases in autocorrelations along lags indicate fast 
convergence. Fig. 3c shows random prior and posterior PDFs for clay, quartz, and water volume fractions. The posterior PDFs estimate the 
means and standard deviations. The correct solutions conform to the ranges defined by the standard deviations. As shown in Fig. 2, clay and 
quartz volume fractions exhibit higher standard deviations (0.04 and 0.03) than the standard deviation of water volume fraction (0.01).

Fig. 4a shows an example of the path one of the ensemble walkers has traveled. Even though the initial random state is unrealistic, the 
walker finds the surface (as unity constraint) in five steps, locates the low misfit area in ten steps, and samples the area ever since. In 
MCMCES, even though each walker travels simultaneously and trades the proposal distribution, each walker explores the model space 
independently. Fig. 4b shows the posterior steps of the walker that only sample the area whose misfit is lower than the targeted value. The 
final posterior PDFs represent the unbiased contributions from all the ensemble walkers and sample the model space in volume fractions 
given a preset precision constant.

The synthetic example demonstrates that overfitting the data leads to erroneous inverted solutions because of data errors. Also, deter-
mining a proper precision constant is key to estimating uncertainties from noisy data. Posterior PDFs represent plausible solutions, 
thereby quantifying the uncertainties. Above are the general rules applied to both Bayesian inversions in volume fractions and endpoints, 
explained in the next section.

Field Data Example. Next, we demonstrate our method using a set of quad-combo logs from a carbonate reservoir. The zone of interest 
is from the measured depth of 11,450 to 11,700 ft with a sample interval of 0.5 ft. The host rock consists of anhydrite, dolomite, calcite, 
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quartz, and clay. Water and oil are the fluids in the pore space. Available well logs are GR, RHOB, NPHI, CX, DT, and U. The inversion 
is well-determined. The input well logs are weighted by the inverse of their standard deviations.

The endpoints used in this case are shown in Table 1. First, we arbitrarily select one of the depth samples to parameterize MCMCES. 
Fig. 5a shows the trace plots of MCMCES at measured depth of 11,570 feet after employing 100 ensemble walkers with 800 steps per 

Fig. 3—MCMCES diagnostic panels for the Bayesian inversion of the three-constituent composite. (a) Trace plots of the misfits, 
volumes of clay, volumes of quartz, and volumes of water. The burn-in is determined where the likelihood function and traces 
converge to stationary iterations, marked by the black dashed line. (b) Autocorrelations of model parameters. The autocorrelations 
reduce rapidly along with the lag, indicating fast convergences. (c) Prior and posterior distributions. MCMCES does not require 
specifying a distribution for prior information. Random distributions are used for the cases in the paper. Posterior PDFs are 
characterized by histograms, means, and standard deviations. The correct solutions (black dashed lines) fall between the ranges 
defined by means and standard deviations (yellow areas).

Fig. 4—Steps of one ensemble walker for the inversion of the three-constituent composite. This example employs 100 ensemble 
walkers. However, only one of the ensemble walkers is shown for demonstration purposes. (a) Total 500 steps of the ensemble 
walker. The green diamond indicates the random initial state of the walker. (b) The posterior steps after burn-in.
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walker. After 40,000 total steps, the likelihood function reaches the target distribution, and the iterations in volume fraction converge. 
Therefore, the burn-in section is selected at 50% of the total steps. The acceptance rate is ideal at the value of 0.23. Fig. 5b illustrates the 
autocorrelations of model parameters. The autocorrelations decrease rapidly along with lags, indicating efficient convergence. The poste-
rior PDFs of volume fractions are shown in Fig. 5c as histograms. Dolomite exhibits a mean of 0.62 in volume fraction with the highest 
uncertainty of 0.06 in standard deviation, whereas clay, water, and oil have less than 0.01.

Constituent Gamma Ray (API) Conductivity (S/m) Density (g/cm3)
Neutron Porosity 

(v/v)
Compressional 
Slowness (μs/ft)

Volumetric
Cross Section

(b/cm3)

Anhydrite 10 0 2.98 0.01 50.0 14.9

Dolomite 20 0 2.88 0.05 42.0 10.0

Calcite 10 0 2.71 0.0 47.0 16.0

Quartz 5 0 2.68 −0.02 53.0 4.8

Clay 200 0.8 2.79 0.3 85.0 8.0

Water 0 10 1.0 1.0 189.0 0.4

Oil 0 0 0.8 0.95 190.0 0.1

Table 1—Endpoints used for the carbonate field example.

We repeat the same parameters for the entire interval of interest. Fig. 6a shows the results of the depth-by-depth MCMCES. The pos-
terior PDFs in volume fractions are displayed in color schemes. The logs reconstructed from posterior PDFs compared with the input logs 
are shown in Fig. 6b. The faithful agreement between the input and reconstructed well logs indicates plausible realizations, conforming 
to the unity constraint (Track 7 of Fig. 6b). The solutions from deterministic and Bayesian inversions are consistent, but the latter explores 
the model spaces and returns realizations that honor the injection well logs within the acceptable misfits. As shown in the previous syn-
thetic example, the posterior PDFs depict the model space of each constituent volume fraction. The minerals generally have higher uncer-
tainties than the fluids because of their similarity in endpoints compared with the endpoints of fluids. However, the clay volume fraction 
is less uncertain than other minerals because clay with a relatively high GR reading can be well-constrained by the gamma ray log. The 

Fig. 5—MCMCES diagnostic panels for the Bayesian inversion of one depth sample (measured depth of 11,570 ft). (a) Trace plots of 
the likelihood function and model parameters. The burn-in is determined at the total steps of 40,000 because of the convergences 
in misfits and volume fractions. (b) Autocorrelations of model parameters show reasonable decays in lags. (c) Posterior PDFs of 
volume fractions. The dolomite volume fraction exhibits the highest uncertainty (standard deviation = 0.08).
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uncertainties in volume fractions may change with (1) the noise level in the data, (2) similarity between constituent endpoints, and (3) the 
weighting of each well log in the inversion. Finally, the computation for this field example with 501 depth samples takes 87 seconds, 
which is practical for day-to-day use.

Estimation of Uncertainty in Petrophysical Endpoints (G)
In practice, optimizing endpoints in the multimineral analysis is time-consuming and commonly adjusted with a trial-and-error approach. 
Nevertheless, the variation in endpoints may provide local geological information. Moreover, the uncertainties of endpoints have not been 

Fig. 7—A synthetic model and simulated well logs. Track 1 shows that the synthetic model consists of anhydrite, dolomite, calcite, 
clay, water, and oil with 200 depth samples. Tracks 2–7 are simulated well logs from the model and endpoints. The black curves 
are logs without any noise. 5% Gaussian noises are added to the simulated well logs as the red dashed curves. The noise levels 
appear differently because of the different display scales of the logs.

Fig. 6—Depth-by-depth posterior PDFs and reconstructed logs for the field example. (a) Posterior PDFs in volume fractions are 
shown in the color schemes. For example, the dolomite volume fraction (Track 2) exhibits the highest uncertainties, whereas clay, 
water, and oil volume fractions show the lowest. (b) The faithfully reconstructed logs from the posterior solutions indicate the 
plausibility of the solutions. The solutions also conform to the unity constraint (Track 7).
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statistically assessed by other studies so far. Bayesian inversion of this section aims to automate the endpoint selection with associated 
uncertainties, which is a nonlinear multivariate task and more computationally intense than estimating uncertainties in volume fractions. 
The model parameter (θ) in Eq. 5 is now the endpoint matrix (G). The misfits from depth-by-depth deterministic inversions are summed 
along the depths for every step in MCMCES to evaluate a given endpoint matrix. We assume that the endpoints do not change along the 
depths of interest, which is also the prerequisite for conventional multimineral analysis. Also, the well logs are recorded in a reasonable 
wellbore condition. The uncertainty assessment provides interpreters with additional statistical information to assist the endpoint selection 
and analyze local geology by assessing the posterior PDFs in endpoints. We present three synthetic examples to validate our approach 
before applying MCMCES to a field example.

Synthetic Data Examples. We design a synthetic rock model as shown in Track 1 of Fig.  7. The formation consists of anhydrite, 
dolomite, calcite, clay, water, and oil with 200 depth samples. Depending on rock composition, the formation can be divided into two 
intervals. The top 100 depth samples represent an interval with a clay-dominated and low-porosity matrix. The underlying interval 
represents a carbonate-rich and medium-porosity oil-saturated matrix. The well logs, including RHOB, NPHI, CX, GR, DT, and U, are 
modeled from the volume fractions and endpoints using Eq. 1. The endpoints used in this example are shown in Table 2. The well logs 
are simulated without and with 5% Gaussian noises (Tracks 2–7 of Fig. 7). The objectives of the synthetic examples are to (1) provide 
a practical application to assist the endpoint selection, (2) assess the uncertainties associated with endpoints, and (3) understand the 
limitations when the data are noisy.

Constituent
Gamma Ray 

(API)
Conductivity 

(S/m) Density (g/cm3)
Neutron Porosity 

(v/v)
Compressional 
Slowness (μs/ft)

Volumetric
Cross Section

(b/cm3)

Anhydrite 10 0 2.98 −0.03 49.0 14.9

Dolomite 10 0 2.87 0.03 43.5 9.0

Calcite 15 0 2.71 0.0 47.5 13.7

Clay 120 0.1 2.79 0.3 90.0 8.7

Water 0 8.2 1.0 1.0 189.0 0.4

Oil 0 0 0.7 0.95 210.0 0.1

Table 2—Endpoints used to simulate the synthetic example.

Estimating Gamma Ray Endpoints Using Perfect Data. Among commonly used endpoints, gamma ray endpoints may be inconsis-
tent and vary from place to place. This example validates our method by estimating gamma ray endpoints using perfect data. Unlike the 
conventional approach, which requires endpoints to be determined before inverting for volume fractions, our approach requires only rea-
sonable upper and lower bounds for uncertain endpoints as prior information for Bayesian inversion. Furthermore, random distributions 
are assumed. In this case, MCMCES estimates the posterior PDFs of gamma ray endpoints with the given precision constant while other 
endpoints are correct and constant. The upper and lower limits for anhydrite, dolomite, and calcite gamma ray endpoints are set between 
[5, 20] API. Whereas clay is commonly more radioactive, the initial steps of ensemble walkers are selected randomly from 80 to 140 
API. Note that the fluids generally are not radioactive, and their gamma ray endpoints are zero. For forward modeling, the explicit form 
of Eq. 1 is given by

	﻿‍
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For the likelihood function in endpoints, Cheng et al. (2021) use a two-step approach in which the first step is the linear least-square 
optimization given by

	﻿‍
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,
‍� (10)

with the constraint (Eq. 4, 0 ≤ Vi ≤ 1) at every depth. The depth-by-depth misfits are then summed along the depths for the likelihood 
function of each endpoint matrix. A matrix of endpoints that exhibits a low summed misfit is more likely to be accepted than an endpoint 
matrix with a high misfit. The method proposed by Cheng et al. (2021) shows promising results in estimating the posterior PDFs of end-
points but requires significant computational time for solving constrained linear inversions. For an example of 200 depth samples, if we 
employ 100 walkers with 500 steps per walker, a total of 10 million (200‍�‍100‍�‍500) depth-by-depth inversions are performed. In this 
paper, we improve the efficiency of estimating endpoint posterior PDFs by replacing the depth-by-depth constrained inversion with an 
unconstrained one. The fitness of an endpoint matrix is evaluated by how the resultant volume fractions meet the material balance (Eq. 
3). Accordingly, the proposed likelihood function for endpoints is expressed as
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where j represents the jth depth sample, K is the total number of depth samples, and N is the number of constituents. The prerequisite for 
MCMCES in endpoints using our proposed likelihood function is that the number of well logs must be equal to or greater than the number 
of constituents (M ≥ N). Even though the resultant volume fractions may be unrealistic (>1 or <0), the sum of solutions meeting the mate-
rial balance determines the fitness of the given endpoint matrix. The unconstrained linear inversion reduces the computational time for a 
more practical application. At each iteration, the ensemble walkers propose a new value in selected endpoints for each chain. If the pro-
posed step is outside the given range, the current value is not evaluated and stays unchanged until the next proposal is inside the expected 
range. The likelihood function only evaluates the endpoint matrix when the proposal is inside the preset range.

In this synthetic case where input well-log data are noise-free, a small precision constant of 1E-5 is used to approximate the correct 
gamma ray endpoints. The number of constituents (6) equals the number of input logs (6). We employ 100 ensemble walkers, and each 
walker takes 500 steps. Fig. 8a shows the trace plots of the likelihood function and gamma ray endpoints for anhydrite, dolomite, calcite, 
and clay. While the iterations converge before the combined steps of 20,000, a burn-in of 0.4 is selected. Fig. 8b exhibits the autocorrela-
tions of gamma ray endpoints whose values decrease quickly along with the lags, indicating optimal convergence time. The acceptance 
rate of 0.28 is in a reasonable range. Fig. 8c shows the posterior PDFs of gamma ray endpoints, which correctly predict true endpoint 
values with standard deviations. The gamma ray endpoint of clay is the most sensitive parameter with the smallest standard deviation 
(0.01), whereas calcite has the least sensitivity. The precise results from the synthetic example with noise-free data validate the feasibility 
of using the proposed likelihood function (Eq. 11) for MCMCES in endpoints. The computation for this example costs 50 seconds. Using 
the approach described in Cheng et al. (2021) with the same parameters requires more than one hour of computational time to produce 
similar results.

Fig. 8—MCMCES diagnostic panels for the Bayesian inversion in endpoints. The figures show a synthetic case without noises 
in the data. (a)  Trace plots of the likelihood function and model parameters (GRs for anhydrite, dolomite, calcite, and clay). 
(b) Autocorrelations of model parameters. (c) Posterior PDFs of model parameters, which correctly predict the solutions with 
uncertainties.

Estimating Gamma Ray Endpoints Using Noisy Data. The next synthetic case assesses the posterior PDFs of the same gamma ray 
endpoints, but 5% Gaussian noises are added to all the well logs, as shown in red dashed curves in Fig. 7. Even though the prior infor-
mation keeps the same as the previous noise-free case, the precision constant cannot be as small to account for the noises in the data. 
Otherwise, overfitting the data leads to erroneous estimations. Hence, a larger precision constant of 5E-4 is used for MCMCES in end-
points. In this case, 100 ensemble walkers with 500 steps per walker are used. Fig. 9a shows the trace plots of all the steps, and a burn-in 
parameter of 0.4 is selected. The acceptance rate is 0.33, and the computational time is 24 seconds. Fig. 9b illustrates the reasonable 
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Fig. 9—MCMCES diagnostic panels for the Bayesian inversion in endpoints. The figures show a synthetic case with noisy data. 
(a) Trace plots of the likelihood function and model parameters (GRs for anhydrite, dolomite, calcite, and clay). (b) Autocorrelations 
of model parameters. (c) Posterior PDFs of model parameters. Black dashed lines represent the correct solutions. The yellow 
areas represent the ranges defined by the means and standard deviations of the posterior PDFs.

Fig. 10—Input and reconstructed logs. The input logs are shown in black curves. The reconstructed logs are simulated from 
constrained inversions with posterior endpoint matrices. The unity constraint is plotted in Track 7.

D
ow

nloaded from
 http://onepetro.org/R

EE/article-pdf/doi/10.2118/210576-PA/2700070/spe-210576-pa.pdf/1 by C
olorado School of M

ines user on 09 August 2022



2022 SPE Reservoir Evaluation & Engineering12

convergence time from autocorrelations of model parameters. Fig. 9c shows the posterior PDFs of gamma ray endpoints with means and 
standard deviations under the given precision constant. The predicted ranges defined by means and standard deviations, marked by yellow 
colors, are the most probable combinations estimated from MCMCES. Note that the uncertainties of endpoints are higher than in the 
previous case because of the higher value of the precision constant to account for noises. In addition, the correct solutions are all within 
the predicted ranges but are not the modes of posterior PDFs. The combinations in modes represent the solutions with the lowest misfits.

Fig. 10 depicts the reconstructed logs in probability compared with the noisy input logs. Note that we use Eqs. 10 and 11 to efficiently 
evaluate the fitness of individual endpoint matrices. Reconstructing logs to validate the posterior endpoint matrices is required. The recon-
structed logs are computed from the posterior endpoint PDFs and the volume fractions, inverted from constrained linear least-square 
inversions. The faithful matches between input and reconstructed well logs indicate that the computed posterior PDFs in endpoints are 
plausible. The reconstructed well logs in the top interval show higher uncertainties than the bottom interval because of the high gamma 
ray reading from the high clay content of the top interval. DT and NPHI exhibit higher uncertainties among logs because their lower 
weightings are used in the inversion. This example shows that estimating the endpoint uncertainties is feasible even with noisy well-log 
data.

Estimating 20 Endpoints Using Noisy Data. The previous examples illustrate how to estimate uncertainties in selected endpoints 
through the posterior PDFs, while the rest of the endpoints remain fixed. However, adjusting endpoints is a multivariate problem. If any 
endpoints are inappropriately determined, the resultant posterior PDFs of selected endpoints are likely affected. Therefore, this example 
assesses up-to-20-endpoint posterior PDFs, similar to the field application where interpreters are uncertain about selecting endpoints. Our 
method helps estimate posterior endpoint combinations from the given well-log data. We continue using the noisy well logs (Fig. 7) and 
compute the posterior PDFs for RHOB, NPHI, GR, DT, and U endpoints of all the solid constituents (anhydrite, dolomite, calcite, and 
clay). Note that the endpoints for CX are not included because the conductivities of nonmetal minerals are commonly assumed to be zero, 
except for minor conductivity from clay. The explicit ranges of endpoints are given by
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Fig. 11—Endpoint posterior PDFs with means and standard deviations. The black dashed lines mark the correct solutions. The 
most probable ranges defined by the means and standard deviations are colored in yellow.
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In Eq. 12, endpoints without ranges remain constants during iterations. The precision constant is set to 0.002, while 100 ensemble walkers 
with 500 steps per walker are used for MCMCES. The computation takes 22 seconds, while the acceptance rate is 0.28. Fig. 11 demon-
strates the posterior PDFs of selected endpoints with marked correct solutions. The most probable endpoints with uncertainty statistics are 
displayed with means and standard deviations. The true answers generally fall within the predicted standard deviations. For instance, even 
though the NPHI endpoint for clay starts with a wide range in [0.15, 0.35], MCMCES identifies the faithful posterior PDF that is not at 
the center of the prior range. Fig. 12 shows the comparison of the reconstructed and injection well logs, including the unity constraint. 
The good matches validate the plausibility of the estimated endpoint matrices. Finally, the 20-endpoint example shows that our MCMCES 
in endpoints can assess the uncertainties and provide useful parameter information to assist the selection of endpoints.

Fig. 12—Input and reconstructed logs for the synthetic example of 20 endpoints with noisy data. The reconstructed logs are 
simulated from constrained deterministic inversions with endpoint posterior PDFs and are shown in color schemes. The unity 
constraint is plotted in Track 7.

Field Data Example. We apply our method to a suite of well logs from the unconventional Bakken Shale Formation (North Dakota). 
The available well logs are RHOB, NPHI, CX, standard gamma ray (SGR), computed gamma ray (CGR) from thorium and potassium, 
DT, and U, as shown in Fig. 13. The interval of interest includes the Lodgepole, Upper Bakken Shale, Middle Bakken, Lower Bakken 
Shale (including a section of Pronghorn), and Three Forks Formations. Core X-ray diffraction (XRD) data identify quartz, dolomite, 
calcite, clay, and kerogen composing the host rock with quantitative measurements. Clay mostly consists of illite. Water and oil are the 
fluids in the pore space. The SGR in Upper Bakken Shale and Lower Bakken Shale exhibits extremely high readings (~800 API) because 
of the high uranium content of kerogen in place. Approximating the kerogen gamma ray endpoint can be challenging because there is a 
wide range of plausibility. In addition, other gamma ray endpoints may affect the approximation in the trial-and-error process. Therefore, 
applying MCMCES in SGR and CGR endpoints helps identify posterior combinations from the given well logs by only setting reasonable 
ranges of endpoints as prior information. The ranges of endpoints and explicit form of Eq.1, in this case, can be expressed as

	﻿‍
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In this field case, we use 100 ensemble walkers with 600 steps per walker and a precision factor of 0.1. The burn-in is 0.4, with an accep-
tance rate of 0.32. Fig. 13 shows the reconstructed logs in probability compared with the input logs. The inverted volume fractions are 
shown in Fig. 14 and are consistent with XRD and core measurements. Fig. 15 illustrates the crossplots of the core measurements and 
inverted results with error bars. Fig. 16 demonstrates the posterior PDFs in gamma ray endpoints of solid constituents. Note that the 
volume fractions in Fig. 14 are realizations that are inverted linearly from the well logs and endpoint posterior PDFs with the constraint 
of Eq. 4. The faithfully reconstructed logs and good matches between inverted volume fractions and XRD data indicate plausible endpoint 
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combinations. The posterior PDFs in gamma ray endpoints assist interpreters in determining the most probable combinations from the 
given well-log data. For instance, the prior SGR limits for kerogen start with a wide range of [1,500, 4,500], but the posterior PDF esti-
mates a mean of 2,914 API with a standard deviation of 585 API. The high uncertainties in kerogen volume fraction result from the wide 

Fig. 13—Input (black) and reconstructed (color scheme) logs for the Bakken field example.

Fig. 14—The resultant volume fractions from linear constrained inversions with posterior endpoint PDFs. XRD and core data are 
plotted as black dots to cross-check the inversion results.
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range of kerogen gamma ray searching limits. Additional iterations of MCMCES can be done by narrowing the prior limits of kerogen 
gamma ray to approximate its posterior distribution further. The computation of this example requires 53 seconds.

Discussion
Bayesian inversion is a statistical tool to sample the targeted distributions of the model parameters. The posterior PDFs represent the most 
probable realizations suggested by the well log data, targeted misfit, selected constituents, and petrophysical models (equations). The 
posterior PDFs can be affected by data errors, rock composition, similarity in endpoints, and weightings of equations. Our implementation 
shows posterior PDFs in histograms quantified by the mean and standard deviation. The mode of a posterior PDF may not be a good 
measure to represent the Bayesian statistics as the synthetic example shows that adapting only the modes is likely overfitting the data. 
Posterior solutions within the ranges defined by the mean and standard deviation are equally plausible. Determining the value of the pre-
cision constant is key to estimating meaningful posterior PDFs and depends on the noise level in the data. If the noise level is unknown, 
we suggest starting with a larger value and reducing it iteratively.

Our methods automate the selection of model parameters and only require the upper and lower limits as prior information with random 
distributions. However, setting reasonable limits helps estimate reliable posterior PDFs and reduces convergence time. Defining the 

Fig. 15—Crossplots of the core measurements and inversion results. The error bars represent 95% confidence intervals.

Fig. 16—Posterior PDFs in SGRs and CGRs. The most probable range for kerogen in SGR is a mean of 2,914 API with a standard 
deviation of 585 API.
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proper bounds and diagnosing posterior PDFs still rely on the interpreters’ knowledge. For instance, the range of 0–1 is the largest possi-
ble range for volume fractions. However, the fluid volume fractions should be between 0 and 0.5 if the formation is known to be consol-
idated. The ranges of endpoints can be from interpreters’ local experience or 15% above and below the standard values. In addition, some 
endpoints should be determined as prior information to reduce the model dimensions. For instance, the gamma ray of fluid or conductivity 
of most minerals (except clay or metals) should be zero or close to zero. We recommend using the endpoint values directly measured in 
the research area and using our method for endpoints with higher uncertainty. For instance, our approach may approximate water conduc-
tivity, but we suggest obtaining conductivities from available water sample measurements or Pickett plots.

Conclusions
We implement Bayesian inversions to quantify the uncertainties of multimineral analysis. MCMCES in the Bayesian framework shows 
efficient convergence with fewer tuning parameters, most suitable for multimineral analysis. We evaluate the uncertainties in volume 
fractions or endpoints with different likelihood functions. The suggested workflow starts with endpoint estimation and then assesses the 
uncertainties in volume fractions with the given endpoint matrix. However, the two Bayesian inversions are independent and can be 
applied separately for different purposes. For instance, the well-by-well variation in endpoints may provide important insights into the 
geology of the research area. In addition, the endpoint estimation may be used to identify normalization issues of well logs if the posterior 
endpoint PDFs of a certain log drift from expected values. Moreover, if one is confident in their endpoint matrix, one may directly esti-
mate the posterior PDFs in volume fractions. One limitation of our method is that estimating endpoint uncertainties may not be used on 
the well-log data recorded in a bad-hole condition. The resultant endpoint estimation may be erroneous.

We show comprehensive diagrams of synthetic and field examples to diagnose the performance of the Bayesian inversions. Our 
method only requires defining reasonable upper and lower limits for model parameters with random distributions as prior information. 
The synthetic examples validate our method of estimating the posterior PDFs that conform to the target distributions. The number of 
uncertain endpoints can be up to 20. The iterative finetuning can be done by adjusting the search ranges of the model parameters to better 
approximate the targeted distributions. The field examples demonstrate efficient computations in posterior PDFs of volume fractions or 
endpoints to assess uncertainties and assist interpretation.

Nomenclature
	 d 	=	 well log data
	G 	=	 constituent petrophysical endpoints
	 k 	=	 thinning parameter
	K 	=	 number of depth samples
	M 	=	 number of well logs used in the multimineral analysis
	 n 	=	 number of model parameters
	N 	=	 number of constituents selected in multimineral analysis
	‍
!

V ‍	=	 vector of volume fraction, v/v
	X 	=	 walker in a Markov chain
	Y 	=	 randomly selected ensemble walker to propose a step from the current state
	Z 	=	 ensemble-tuned proposal distribution
	 θ 	=	 model parameter
	 π 	=	 probability density function
	 σ	=	 precision constant
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