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Estimation of elastic constants from ellipsoidal v elocitiesin orthorhombic media.
Pe dro Conteras, Héctor Klie*, and Reinaldo J. Michelena, PDVSA-Intevep

Summary

This paper introduces an ellipsoidal appro ximation of

phase and group velocities of the P-; S1- and S2-w ave
propagation modes in an orthorhombic media and, show

how to estimate elastic constan tsfrom these velocities.

The procedure is basically tw o-fold. First, w eestimate

seven ellipsoidal velocities near the vertical symmetry

axis whic hrepresen t both the direct and the NMO

velocities (in the symmetry planes XZ and Y Z) for

each w avepropagation mode. Secondly, the ellipsoidal

velocities are used to build a linear square system

whose simple analytical solution returns an estimation

of the elastic constan ts. The accuracy of this inversion
process depends on how accurately NMO velocities are

estimated. The whole procedure is valid for homogeneous

media, although extensions to heterogeneous media can

be performed through tomographic techniques.

In troduction

An orthorhombic model describes a layered medium frac-
tured in tw oorthogonal directions. Wave propagation

in orthorhombic media has been extensiv ely studied;

see e.g., Cheadle et al. (1991); Grec hk aand Tsv ankin
(1996); Sc hoen berg and Helbig (1991); Tsmkin (1996a);

Tsv ankin (1996b) among others. Recently, Tsv ankin
(1996b) analyzed the behavior of P-w aves within a wak

anisotropic media for an orthorhombic model. In his

w ork, Tswankin stresses out the importance of having dif-

ferent appro ximations to the wve velocities in order to

either in vert elastic parameters or perform elocity anal-
ysis in complex structures. Ho w everhis approach does

not deal with the shear wave propagation.

We show in this paper that the square of phase wlocities
for orthorrombic media near the vertical symmetry axis
can be approximated by an ellipsoidal function. We es-
tablish that this ellipsoidal function in the phase domain
corresponds to ellipsoidal functions in the group domain.
This generalizes to orthorrombic media the results ob-
tained by Levin (1978); Byun (1982); Muir (1990) for TI
media.

The ellipsoidal approximation is a useful device that al-
lows to go back and forth betw een phase and group plys-
ical en tities. In this way, we are able not only to charac-
terize media along a vertical symmetry axis but also to
estimate the elastic constants describing the anisotropic
medium.

Michelena (1994) show ed that the elastic constarts con-
trolling compressional and shear w avepropagation can
be estimated from P- and SV-w ave traveltimes from ei-
ther crosswell or VSP geometries. The present approach
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extends his work for orthorhombic media.

Both the ellipsoidal approximation and the inverse map-
ping to estimate elastic constants are valid for arbitrary
strengths of anisotropy, but are restricted to a near sym-
metry axis, unlike the weak anisotropy approximation of
Tsv ankin (1996a) for orthorhonbic media, which is suit-
able only for a wider angle of P-w ave propagation.

Ellipsoidal velocities near the vertical axis

The eigenvalues of the Christoffel equation are given by
the roots of the characteristic polynomial

det [Gik (61,02) — W&lk] =0, (1)

of cubic-order in W. Here, W = pV?2, is the square of the
phase velocity (assuming p = 1); d;x, is the Kronecker
Delta-function; Gix (61, 02), is the Christoffel matrix de-
termined by the elastic constants depending on the polar
angle, 01, and on the azimuthal angle, 65 (see Figure 1).
The roots of the cubic polynomial represen tthe square
phase velocities for eac h of the differert wave propagation
modes, namely P, S1 and S2. The exact group velocity
can be found numerically by

Cijriosarf
Wiz

(2

Vo = ) (2)

where W; is the squared phase velocity for each of the
different modes ¢ = P, S1, 52 ; C;;x denotes the constant
elastic tensor; the a1 and a2, are the eigenvectors of the
Christoffel equation and 3; is the normal direction.

A

Va oup Vphase

Fig. 1: P olar and azimthal angles.

In order to understand the behavior of the phase velocity
for a small polar angle, 61, the square of the phase veloc-
ity, W; (01, 02) is expanded by Taylor series for a small 6,
and a fixed 02. Neglecting terms higher than sin? f;, we
obtain

w; (01,92) = W; (0,92) (3)
ow;

6ST201 (0, 02) SiIl2 01.
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Note that no approximation is performed in the azimuthal
angle, 2. The first term on the right hand side of (3) and
the deriv ative term are computed from the karacteristic
polynomial (1) at 61 and at a fixed 2. Hence, terms for
the squared phase velocities Wp, Ws1 and W are given
by Contreras et al. (1997):

Wi (¢1i,02:) = Wgzicos’ b,
+ WNMO[XZ],i COS2 027,' SiIl2 017,' (4)
+ WNMO[YZ],i SiIl2 02,1‘ SiIl2 01,1‘,

for : = P, S1 and S2. Equation (4) represents an ellipsoid

in the phase domain. The propagation along the vertical

for each w ave-modeis given by Wz p = Caz, Wz,s1 =

Css and Wz s2 = Cs5. The NMO velocities along the

symmetry planes are expressed as follows:

(Cis + C55)2

W, = C 5
NMO[X Z],P 55 033 — 055 ( )
_ (Cas + Cua)?
Wxmoryz,p = Caa+ Cas — Cua (6)
(Cas + 044)2
W, = C —_ 7
NMO[Y Z],S51 22 + 044 — 033 ( )
_ (Cis + 055)2
Wxmorxzl,s2 = Cu+ Cos — Cas (8)
and
Wixmorx 21,51 = Wxmory 21,52 = Coo- 9)

The above expressions can be employed to estimate the
elastic constants as a function of phase velocities in an or-
thorhombic media. Ho w ever, in general, phaseetocities
are hard to obtain from traveltimes described by group
velocities. In order to generate expressions for group ve-
locities with the ellipsoidal approximation at small polar
angles, werely on a transformation similar to the one
proposed by Levin (1978); Byun (1982); Muir (1990). In
the 3-D orthorhombic case, their transformation can be
simply recast as

010 — @1
02 — @2 (10)
W, - W,

where ¢1,;, is the exact polar group angle and ¢, , is the
azimuthal group angle both computed from equation (2)
for 1 = P,S1,52 (see Figure 1). The mapping just shown
suggests a direct correspondence betw een eac h phase and
group entity, in the same fashion that trivially occurs
when the model is isotropic, elliptically anisotropic (in
TI media) or when the ray travels along a particular axis
of symmetry.

Applying transformation (10) to equations (5-9) the cor-
responding ellipsoidal group velocities for each wave mode
propagation near the vertical axis are

Wyt (pryird2,6) = Wycos” ¢,
+ WI\?I\/IIO[XZ],i cos” P2,i sin’ $1,{11)

~1 . 2 . 2
+ WNMO[YZ],iSHl $2,isin” P14,
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for i = P, S1 and S2, which represents an ellipsoid in the
group domain.

It is w orth to add that the abore appro ximation is alid
not only near the vertical symmetry axis Z. It also applies
to velocities near the horizortal axis X or Y. For the X
axis, we need to make the follo wing hiange of subindexes:
Ci1 & Cs3, Ci2 < Chs, Css < Ces. Forthe Y axis
follows: 012 — 013, 022 L xd 033, and 055 — 055. The
rest of the elastic constants remain unchanged.

In v erse mapping from ellipsoidal elocities to
elastic constants

The formulae derived in the previous section can be em-
ployed to find out the elasticconstan ts con trollingach
w avepropagation mode near an axis of symmetry (in
analogy to the VTI case analized by Michelena (1994)).
T o do so, it is importart to be aw are of the geometry of
the problem, the aperture of both polar and azimuthal
angles and the propagation mode.

By using P-,S1- and S2- full aperture traveltime measure-
ments, it is possible to estimate the nine elastic constants
describing an orthorhombic medium from lab measure-
ments Cheadle et al. (1991). This estimation results af-
ter solving a nonlinear system of equations (the Christof-
fel stiffness equations) that simplifies to a diagonal sys-
tem when w avepropagation occurs along a symmetry
axis. That is: C11 = Wx,p, C22 = Wy,p, Css = Wz,p,
Cis = Wzs1 = Wys1, Css = Wx,s1 = Wzss2 and
Ces = Wy,s2 = Wx,s2. Ho w ever, this method is hardly
applicable in practical situations since it requires wide
aperture data. Clearly ,this requirement does not exist
for surface, crosswell or VSP geometries.

In our case, seven elastic constan tscan be determined
from the set of NMO velocity equations implied by (5-8)
and the direct velocities Wz p, Wz s1 and Wz s2. Ev al-
uating the equations for a fixed angle #; and a pair of
different values for #2 w e obtain 7 equations with 7 un-
kno wns. The independent terms are given by: Wz p,
Wz,s1, Wz,s2, Wamoixzl,ps Wxmoly z,p» Wxmoly 21,51
and WNMO[XZ],S2~

The explicit analytic solution of this system is given b y

Css = Wgzp, Cu=Wzs1, Css=Wzss,
Cii = Wnxwmoixzls2 + Wymoixz,p — Waz,s2,
Ca2 = Wnwmoryzys1 + Wymoryz,p — Wz,s2,
Ciz = \/(WNMO[XZ],P —Waz,52)(Wz,p — Wz,s2)
Wz,s2,
Caz = \/(WNMO[YZ],P —Wz,s1)(Wz,p —Wz,s1)
— Wgsi.

The constant C12 is not computed above since it con trols
the propagation along the horizontal XY plane which is
not well appro ximated ly the ellipsoidal mapping. Note
that the constant Cgs can be immediately attained from
(9), where the NMO and direct velocities are the same. In
con trast to Cheadle et al. (1991), both C11 and Caa are
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linear combinations of the ellipsoidal parameters lying on
the symmetry planes and are independent of Wx,p and
Wy,p.

Therefore, estimation of elastic constants in homogeneous
orthorhombic media can be performed by fitting trav-
eltimes near a single axis of symmetry with ellipsoidal
models. In the case of a heterogeneous media, the in-
version can be carried out by tomographic techniques.
Suc h approah was previously proposed by Michelena et
al. (1995) in TI media.

Numerical example

To validate our approximation, we performed the corre-
sponding inversion on the Cracked Greenhorn Shale case
used b y Dellinger (1991), whose elastic constans are

Fig. 2: Exact (gra y) and ellipsoidal (blak) impulse-response
for P-w ave.

L.

Fig. 3: Exact (gra y) and ellipsoidal (blak) impulse-response
for S1-w ave.

Fig. 4: Exact (gra y) and ellipsoidal (blak) impulse-response
for S2-w ave.

336.6 1173 103.3 00 0.0 0.0
117.3 310.0 923 0.0 0.0 0.0
103.3 923 2239 0.0 0.0 0.0
0.0 0.0 0.0 49.1 0.0 0.0
0.0 0.0 0.0 0.0 54.0 0.0
0.0 0.0 0.0 0.0 00 964
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for differen t polar group angles.

We can observe from Figures 2-4, how both the exact re-

sponse and the approximated response coincide very w ell
near the vertical axis. As the polar angle increases, their

separation also increases monotonically until it reaches a
maximum at 90°. This means that the horizontal v elocity
is not w ellreproduced by the ellipsoidal appro ximation
as expected. Figures 3-4 show anomalies (i.e., triplica-

tions) for in termediate polar angles for the exactS1- and

S2- w ave impulse-responses.These anomalies are unseen

by the ellipsoidal appraximation, which is a single-valued

function.

Figure 5, shows horizon talslices of the 3-D impulse-
response for each wave propagation mode at differert po-
lar angles. We can observ ethat exact and ellipsoidal
group velocities are almost the same at the XY symme-
try plane for a small vertical aperture. A t a polar angle
of 45° w e can obsere how the ellipsoidal approximation
begins to deteriorate. The maximum approximation error
is reached at a polar angle of 90° (not sho wn here).

Figures 6-9 show the relative error made in the estima-
tion of the elastic constants from the NMO velocities. For
small polar angles (< 10°) the error is negligible regard-
less of azimuth. In fact, a pair of azimuthal angles (with
one of them always at 0° degrees) were computed in all
cases. For polar angles betw een10° — 30° the error is
sma.ller in 011 and 022 than in 013 and 023. The az-
im uthangle has no major influence in the accuracy of
the in version. A t largeangles (> 30°) the error in C11
and (a2 is greater than Ci3 and C23 and changes with
respect azimuthal v ariation start to be noticeable forCss
and 023.

Conclusions

We have established that the impulse-response of all dif-
ferent modes of wave propagation are ellipsoids for small
polar angles (near the vertical axis). As a consequence,
horizon tal NMO -elocities are ellipses in agreement with
the results published by Grechk a and Tswnkin (1996).

On the other hand, we have shown hav to estimate elas-
tic constan tsof homogeneous orthorhombic media from
P-, S1- and S2- traveltimes near a single axis of sym-
metry. The accuracy of this estimation from ellipsoidal
parameters depends on the accuracy of the estimation of
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the NMO velocities for small polar angles. The quality

the in version does not depend on the azimuthal angle for

small polar angles around the symmetry axis.

Fig. 6: Relative error in the in version ofC'1; for differen t pola

and azimuthal angles.
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Fig. 8: Relative error in the in version ofC73 for differen t polar
and azimuthal angles.
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