Estimation of elastic constants from ellipsoidal v elocities in orthorhombic media.

Summary

This paper introduces an ellipsoidal appro ximation of phase and group velocities of the $P-, S 1$ - and $S 2$-w ave propagation modes in an orthorhombic media and, show how to estimate elastic constan tsfrom these velocities. The procedure is basically tw o-fold. First, weestimate seven ellipsoidal velocities near the vertical symmetry axis whic h represen t both the direct and the NMO velocities (in the symmetry planes $X Z$ and $Y Z$) for each w avepropagation mode. Secondly, the ellipsoidal velocities are used to build a linear square system whose simple analytical solution returns an estimation of the elastic constan ts. The accuracy of this in version process depends on how accurately NMO velocities are estimated. The whole procedure is valid for homogeneous media, although extensions to heterogeneous media can be performed through tomographic techniques.

In troduction

An orthorhombic model describes a layered medium fractured in tw o orthogonal directions. Wave propagation in orthorhombic media has been extensiv ely studied; see e.g., Cheadle et al. (1991); Grec hk aand Tsv ankin (1996); Sc hoen berg and Helbig (1991); Tsonkin (1996a); Tsv ankin (1996b) among others. Recently, Tsv ankin (1996b) analyzed the behavior of P-w aves within a wak anisotropic media for an orthorhombic model. In his w ork, Tsankin stresses out the importance of having different appro ximations to the we velocities in order to either in vert elastic parameters or perform elocity analysis in complex structures. Ho w everhis approach does not deal with the shear wave propagation.
We show in this paper that the square of phase velocities for orthorrombic media near the vertical symmetry axis can be approximated by an ellipsoidal function. We establish that this ellipsoidal function in the phase domain corresponds to ellipsoidal functions in the group domain. This generalizes to orthorrombic media the results obtained by Levin (1978); Byun (1982); Muir (1990) for TI media.

The ellipsoidal approximation is a useful device that allows to go back and forth betw een phase and group plysical en tities. In this way, we are able not only to characterize media along a vertical symmetry axis but also to estimate the elastic constants describing the anisotropic medium.

Michelena (1994) show ed that the elastic constarts controlling compressional and shear wavepropagation can be estimated from P - and $S V$-w ave traveltimes from either crosswell or VSP geometries. The present approach
extends his work for orthorhombic media.
Both the ellipsoidal approximation and the inverse mapping to estimate elastic constants are valid for arbitrary strengths of anisotropy, but are restricted to a near symmetry axis, unlike the weak anisotropy approximation of Tsv ankin (1996a) for orthorhonbic media, which is suitable only for a wider angle of P-w ave propagation.

Ellipsoidal velocities near the vertical axis

The eigenvalues of the Christoffel equation are given by the roots of the characteristic polynomial

$$
\begin{equation*}
\operatorname{det}\left[G_{i k}\left(\theta_{1}, \theta_{2}\right)-W \delta_{i k}\right]=0 \tag{1}
\end{equation*}
$$

of cubic-order in W. Here, $W=\rho V^{2}$, is the square of the phase velocity (assuming $\rho \equiv 1$); $\delta_{i k}$, is the Kronecker Delta-function; $G_{i k}\left(\theta_{1}, \theta_{2}\right)$, is the Christoffel matrix determined by the elastic constants depending on the polar angle, θ_{1}, and on the azimuthal angle, θ_{2} (see Figure 1). The roots of the cubic polynomial represen the square phase velocities for eac h of the different wave propagation modes, namely $P, S 1$ and $S 2$. The exact group velocity can be found numerically by

$$
\begin{equation*}
V_{g_{i}}=\frac{C_{i j k l} \alpha_{i} \alpha_{k} \beta_{l}}{W_{i}^{1 / 2}} \tag{2}
\end{equation*}
$$

where W_{i} is the squared phase velocity for each of the different modes $i=P, S 1, S 2 ; C_{i j k l}$ denotes the constant elastic tensor; the α_{1} and α_{2}, are the eigenvectors of the Christoffel equation and β_{l} is the normal direction.

Fig. 1: P olar and azinthal angles.
In order to understand the behavior of the phase velocity for a small polar angle, θ_{1}, the square of the phase velocity, $W_{i}\left(\theta_{1}, \theta_{2}\right)$ is expanded by Taylor series for a small θ_{1} and a fixed θ_{2}. Neglecting terms higher than $\sin ^{2} \theta_{1}$, we obtain

$$
\begin{align*}
W_{i}\left(\theta_{1}, \theta_{2}\right) & =W_{i}\left(0, \theta_{2}\right) \tag{3}\\
& +\frac{\partial W_{i}}{\partial \sin ^{2} \theta_{1}}\left(0, \theta_{2}\right) \sin ^{2} \theta_{1} .
\end{align*}
$$

Note that no approximation is performed in the azimuthal angle, θ_{2}. The first term on the right hand side of (3) and the deriv ative term are computed from the laracteristic polynomial (1) at θ_{1} and at a fixed θ_{2}. Hence, terms for the squared phase velocities $W_{P}, W_{S 1}$ and $W_{S 2}$ are giv en by Contreras et al. (1997):

$$
\begin{align*}
W_{i}\left(\phi_{1, i}, \theta_{2, i}\right) & =W_{Z, i} \cos ^{2} \theta_{1, i} \\
& +W_{\mathrm{NMO}[X Z], i} \cos ^{2} \theta_{2, i} \sin ^{2} \theta_{1, i} \tag{4}\\
& +W_{\mathrm{NMO}[Y Z], i} \sin ^{2} \theta_{2, i} \sin ^{2} \theta_{1, i}
\end{align*}
$$

for $i=P, S 1$ and $S 2$. Equation (4) represents an ellipsoid in the phase domain. The propagation along the vertical for each w ave-modeis giv en by $W_{Z, P}=C_{33}, W_{Z, S 1}=$ C_{44} and $W_{Z, S 2}=C_{55}$. The NMO velocities along the symmetry planes are expressed as follows:

$$
\begin{gather*}
W_{\mathrm{NMO}[X Z], P}=C_{55}+\frac{\left(C_{13}+C_{55}\right)^{2}}{C_{33}-C_{55}}, \tag{5}\\
W_{\mathrm{NMO}[Y Z], P}=C_{44}+\frac{\left(C_{23}+C_{44}\right)^{2}}{C_{33}-C_{44}}, \tag{6}\\
W_{\mathrm{NMO}[Y Z], S 1}=C_{22}+\frac{\left(C_{23}+C_{44}\right)^{2}}{C_{44}-C_{33}}, \tag{7}\\
W_{\mathrm{NMO}[X Z], S 2}=C_{11}+\frac{\left(C_{13}+C_{55}\right)^{2}}{C_{55}-C_{33}}, \tag{8}
\end{gather*}
$$

and

$$
\begin{equation*}
W_{\mathrm{NMO}[X Z], S 1}=W_{\mathrm{NMO}[Y Z], S 2}=C_{66} . \tag{9}
\end{equation*}
$$

The above expressions can be employed to estimate the elastic constants as a function of phase velocities in an orthorhombic media. Ho w ever, in general, phase ekocities are hard to obtain from traveltimes described by group velocities. In order to generate expressions for group velocities with the ellipsoidal approximation at small polar angles, werely on a transformation similar to the one proposed by Levin (1978); Byun (1982); Muir (1990). In the 3-D orthorhombic case, their transformation can be simply recast as

$$
\begin{align*}
\theta_{1, i} & \rightarrow \phi_{1, i} \\
\theta_{2, i} & \rightarrow \phi_{2, i} \tag{10}\\
W_{i} & \rightarrow W_{g_{i}}^{-1}
\end{align*}
$$

where $\phi_{1, i}$, is the exact polar group angle and $\phi_{1, i}$, is the azimuthal group angle both computed from equation (2) for $i=P, S 1, S 2$ (see Figure 1). The mapping just shown suggests a direct correspondence betw een eac h phase and group entity, in the same fashion that trivially occurs when the model is isotropic, elliptically anisotropic (in TI media) or when the ray travels along a particular axis of symmetry.
Applying transformation (10) to equations (5-9) the corresponding ellipsoidal group velocities for each wave mode propagation near the vertical axis are

$$
\begin{aligned}
W_{g_{i}}^{-1}\left(\phi_{1, i}, \phi_{2, i}\right) & =W_{Z, i}^{-1} \cos ^{2} \phi_{1, i} \\
& +W_{\mathrm{NMO}[X Z], i}^{-1} \cos ^{2} \phi_{2, i} \sin ^{2} \phi_{1, \mathrm{\ell}}(11) \\
& +W_{\mathrm{NMO}[Y Z], i}^{-1} \sin ^{2} \phi_{2, i} \sin ^{2} \phi_{1, i},
\end{aligned}
$$

for $i=P, S 1$ and $S 2$, which represents an ellipsoid in the group domain.
It is w orth to add that the above appro ximation is alid not only near the vertical symmetry axis Z. It also applies to velocities near the horizontal axis X or Y. F or the X axis, we need to make the follo wing dhange of subindexes: $C_{11} \leftrightarrow C_{33}, C_{12} \leftrightarrow C_{23}, C_{44} \leftrightarrow C_{66}$. F or the Y axis follows: $C_{12} \leftrightarrow C_{13}, C_{22} \leftrightarrow C_{33}$, and $C_{55} \leftrightarrow C_{66}$. The rest of the elastic constants remain unchanged.

In verse mapping from ellipsoidal שlocities to elastic constants

The formulae derived in the previous section can be emplo yed to find out the elastic constan ts con trollingeach w avepropagation mode near an axis of symmetry (in analogy to the VTI case analized by Michelena (1994)). To do so, it is importan to be aw are of the geometry of the problem, the aperture of both polar and azimuthal angles and the propagation mode.
By using P-,S1- and S2- full aperture trav eltime measurements, it is possible to estimate the nine elastic constants describing an orthorhombic medium from lab measurements Cheadle et al. (1991). This estimation results after solving a nonlinear system of equations (the Christoffel stiffness equations) that simplifies to a diagonal system when wavepropagation occurs along a symmetry axis. That is: $C_{11}=W_{X, P}, C_{22}=W_{Y, P}, C_{33}=W_{Z, P}$, $C_{44}=W_{Z, S 1}=W_{Y, S 1}, C_{55}=W_{X, S 1}=W_{Z, S 2}$ and $C_{66}=W_{Y, S 2}=W_{X, S 2}$. Ho wever, this method is hardly applicable in practical situations since it requires wide aperture data. Clearly, this requirement does not exist for surface, crosswell or VSP geometries.

In our case, seven elastic constan tscan be determined from the set of NMO velocity equations implied by (5-8) and the direct velocities $W_{Z, P}, W_{Z, S 1}$ and $W_{Z, S 2}$. Ev aluating the equations for a fixed angle θ_{1} and a pair of different values for θ_{2} we obtain 7 equations with 7 unkno wns. The independent terms are given by: $W_{z, P}$, $W_{Z, S 1}, W_{Z, S 2}, W_{\mathrm{NMO}[X Z], P}, W_{\mathrm{NMO}[Y Z], P}, W_{\mathrm{NMO}[Y], S 1}$ and $W_{\text {NMO }[X Z], S 2}$.
The explicit analytic solution of this system is given by

$$
\begin{aligned}
C_{33} & =W_{Z, P}, \quad C_{44}=W_{Z, S 1}, \quad C_{55}=W_{Z, S 2}, \\
C_{11} & =W_{N M O[X Z], S 2}+W_{N M O[X Z], P}-W_{Z, S 2}, \\
C_{22} & =W_{N M O[Y Z], S 1}+W_{N M O[Y Z], P}-W_{Z, S 2}, \\
C_{13} & =\sqrt{\left(W_{N M O[X Z], P}-W_{Z, S 2}\right)\left(W_{Z, P}-W_{Z, S 2}\right)} \\
& -W_{Z, S 2}, \\
C_{23} & =\sqrt{\left(W_{N M O[Y Z], P}-W_{Z, S 1}\right)\left(W_{Z, P}-W_{Z, S 1}\right)} \\
& -W_{Z, S 1} .
\end{aligned}
$$

The constant C_{12} is not computed above since it con trols the propagation along the horizontal $X Y$ plane which is not well appro ximated ly the ellipsoidal mapping. Note that the constant C_{66} can be immediately attained from (9), where the NMO and direct velocities are the same. In con trast to Cheadle et al. (1991), both C_{11} and C_{22} are

Didsulc consudilts 1 roin enlpsulual velucities

linear combinations of the ellipsoidal parameters lying on the symmetry planes and are independent of $W_{X, P}$ and $W_{Y, P}$.
Therefore, estimation of elastic constants in homogeneous orthorhombic media can be performed by fitting traveltimes near a single axis of symmetry with ellipsoidal models. In the case of a heterogeneous media, the inversion can be carried out by tomographic techniques. Suc h approadh was previously proposed by Michelena et al. (1995) in TI media.

Numerical example

To validate our approximation, we performed the corresponding inversion on the Cracked Greenhorn Shale case used b y Dellinger (1991), whose elastic constans are

Fig. 2: Exact (gra y) and ellipsoidal (blak) impulse-response for P-w ave.

Fig. 3: Exact (gra y) and ellipsoidal (blak) impulse-response for $S 1$-w ave.

Fig. 4: Exact (gra y) and ellipsoidal (blak) impulse-response for $S 2$-w ave.

$$
C_{i j}=\left(\begin{array}{cccccc}
336.6 & 117.3 & 103.3 & 0.0 & 0.0 & 0.0 \\
117.3 & 310.0 & 92.3 & 0.0 & 0.0 & 0.0 \\
103.3 & 92.3 & 223.9 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 49.1 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 54.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 96.4
\end{array}\right) .
$$

Fig. 5: Azimuthal view of each wave mode impulse-response for differen t polar group angles.

We can observe from Figures 2-4, how both the exact response and the approximated response coincide very w ell near the vertical axis. As the polar angle increases, their separation also increases monotonically until it reaches a maximum at 90°. This means that the horizontal velocity is not w ell reproduced by the ellipsoidal appro ximation as expected. Figures $3-4$ show anomalies (i.e., triplications) for in termediate polar angles for the exact $S 1$ - and $S 2-$ w ave impulse-responses.These anomalies are unseen by the ellipsoidal approximation, which is a single-valued function.

Figure 5, sho ws horizon tal slices of the 3-D impulseresponse for each wave propagation mode at different polar angles. We can observ ethat exact and ellipsoidal group velocities are almost the same at the $X Y$ symmetry plane for a small vertical aperture. A t a polar angle of 45° we can observe how the ellipsoidal approximation begins to deteriorate. The maximum approximation error is reached at a polar angle of 90° (not sho wn here).
Figures $6-9$ show the relative error made in the estimation of the elastic constants from the NMO velocities. F or small polar angles $\left(<10^{\circ}\right)$ the error is negligible regardless of azimuth. In fact, a pair of azimuthal angles (with one of them always at 0° degrees) were computed in all cases. F or polar angles betw een $10^{\circ}-30^{\circ}$ the error is smaller in C_{11} and C_{22} than in C_{13} and C_{23}. The azim uthangle has no major influence in the accuracy of the in version. A t large angles $\left(>30^{\circ}\right)$ the error in C_{11} and C_{22} is greater than C_{13} and C_{23} and changes with respect azimuthal v ariation start to be noticeable for C_{22} and C_{23}.

Conclusions

We have established that the impulse-response of all different modes of wave propagation are ellipsoids for small polar angles (near the vertical axis). As a consequence, horizon tal NMO elocities are ellipses in agreement with the results published by Grechk a and Tsvankin (1996).
On the other hand, we have sho wn how to estimate elastic constan tsof homogeneous orthorhombic media from $P-, S 1$ - and $S 2$ - traveltimes near a single axis of symmetry. The accuracy of this estimation from ellipsoidal parameters depends on the accuracy of the estimation of
the NMO velocities for small polar angles. The quality of the in version does not depend on the azinmthal angle for small polar angles around the symmetry axis.

Fig. 9: Relative error in the in version of C_{23} for differen t polar and azimuthal angles.

Dellinger, J., 1991, Anisotropic seismic-wave propagation: Fig. 6: Relative error in the in version of C_{11} for differen t polar Ph.D. thesis, Dept. of Geophysics, Stanford University. and azimuthal angles.

Fig. 7: Relative error in the in version of C_{22} for differen t polar and azimuthal angles.

Fig. 8: Relative error in the in version of C_{13} for differen t polar and azimuthal angles.

Acknowledgements

The authors thank PDVSA-INTEVEP for allowing this publication and Vladimir Grec hkaat CWP for his valuable comments on this work.

References

Byun, B., 1982, Seismic parameters for media with elliptical v elocities dependencies: Geophysics, 47, 16211626.

Cheadle, S., Bro wn, R., and Lawton, D., 1991, Orthorhombic anisotropy: A ph ysical seismic modeling study: Geophysics, 56, 1603-1613.

Contreras, P., Kl íe, H., Mora, C., and Michelena, R., 1997, Ellipsoidal approximation of velocities in orthorrombic media: Expanded abstracts of the 5th International Congress, Brazilian Geophysical Societ y, 255258.

Grec hk a,V., and Tsvankin, I., 1996, 3-D description of normal moveout in anisotropic media: 66th Ann. Internat. Mtg., Soc. Expl. Geophys., 1487-1490.

Levin, F., 1978, The reflection, refraction and diffraction of w aves in media with elliptical elocity dependence: Geophysics, 43, 528-537.

Michelena, R., Harris, J., and Muir, F., 1995, Crosswell tomographic estimation of elastic constants in heterogeneous transversely isotropic media: Geophysics, 60, 774-783.

Michelena, R., 1994, Elastic constan ts of transv ersely isotropic media from constrained aperture trav eltimes: Geophysics, 59, 658-667.

Muir, F., Various equations for TI media:, Technical Report SEP-70, Stanford University, 1990.

Schoen berg, M., and Helbig, K., 1991, Orthorhorbic media: Modeling elastic beha viour in a ertical fracture earth: 53rd Mtg. Eur. Assoc., Soc. Expl. Geophys., 288-289.

Tsv ankin, I., 1996a, Analytic description of group and moveout velocity in azimuthally anisotropic media: Cen ter for Wave Phenomena, Colorado School of Mines, Annual report, 327-344.

1996b, Effective parameters and P-wave velocity for orthorhombic anisotropy: 66th Ann. Internat. Mtg., Soc. Expl. Geophys., 1850-1853.

