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Summary

We present a tomographic method to estimate si-
multaneously P- and S- wave velocities in horizontally,
layered media from traveltimes of reflected, P-S con-
verted waves. The method is based on the exact expres-
sion for the traveltimes of P-S converted waves in laye-
red media. This expression is valid for any offset since
the position of the conversion point is calculated analy-
tically without any approximation. The largest singular
value of the Jacobian matrix that results after lineari-
zing the traveltime function are related to variations in
shear wave velocities whereas the smallest singular va-
lues are related to variations in layer thickness. There-
fore, when inverting the linearized problem by using con-
jugate gradients, shear wave velocities converge faster
than compressional wave velocities. Layer thicknesses
are the hardest to obtain.Singular values related to
shallow layers are larger than singular values related to
deep layers which means, as expected, parameters that
describe shallow layers are easier to obtain than parame-
ters of deep layers. Our synthetic examples show that
by starting the iterative procedure with initial models
whose P-wave velocities are close to the true model, it
is possible to retrieve almost exactly compressional velo-
cities, shear velocities, and layer thicknesses. When the
initial model for P-wave velocities is not as good, it is
still possible to obtain useful results.

Introduction

The use of P-S converted waves has increased over
the last few years after various studies have demon-
strated their tremendous potential as a tool for frac-
ture and lithology characterization (Ata and Michelena,
1995; Miller et al., 1995), imaging sediments in gas sat-
urated rocks (Granli et al., 1995), and imaging shallow
sediments with higher resolution than conventional P-P
data. The reasons for the increased used of P-S con-
verted waves over S-S surveys are two fold: converted
waves cost less and are expected to contain the same
information, in principle, as S-S reflections. However,
even though P-S converted waves are less affected by
azimuthal anisotropy than nonconveted S-S waves, the
asymmetry of the ray paths for converted waves makes
them more cumbersome to handle than nonconverted
waves and more difficult to process to extract informa-
tion about S-wave velocities.

When the  ratio is needed for converted waves
processing (for common conversion point gathering) or
interpretation (for lithology estimation), it is always es-
timated from the ratio of traveltimes  by assuming
that the vertical distance traveled by the P- and S-rays
is the same. However, in cases when the S-wave velocity
in needed for other purposes than computing the 

ratio (for instance, pre-stack depth migration of con-
verted waves), its estimation from converted, reflected
arrivals is more difficult because conventional velocity
analysis techniques of converted waves gathers only
yields a velocity that is somewhere in between P- and
S-wave velocity.

Few work has been done in the development of
methods to estimate  from converted waves. Stewart
(1991) and Ferguson and Stewart (1995), show a method
to estimate S-wave velocities from the reflectivity of P-S
data. However, as far as we know, no method has been
developed yet to estimate P- and S-velocity models in
depth from converted waves energy. This paper presents
a tomographic technique to solve such a problem for hor-
izontally layered media. Tomographic estimation of velo-
cities is not an efficient method of velocity estimation in
layered media from nonconverted reflections. However,
as we show in this paper, traveltime tomography is a
valid alternative for converted, reflected waves since con-
ventional velocity analysis of these data does not yield
S-wave velocities.

We start by developing the analytical expression for
the traveltime of a P-S converted wave that travels in a
homogeneous, isotropic layer. After generalizing this ex-
pression to stratified media, we study the singular values
of the Jacobian matrix that results after linearizing the
analytical traveltime function. The algorithm estimates
simultaneously compressional velocities, shear velocities
and layer thicknesses of stratified models. The analysis
of both singular values of the Jacobian matrix and syn-
thetic examples show that when the problem is solved
iteratively, the speed of convergency of the different pa-
rameters varies, being S-wave velocities the fastest and
layer thicknesses the slowest. Synthetic examples also
show that excellent estimates of compressional and shear
velocities in depth can be obtained if the initial model
for P-waves velocities is close to the true solution.

Traveltime for P-S converted waves in layered
media

Consider a reflected, converted wave over an ho-
rizontal interface located at a depth h [Fig. (l)]. The
conversion point CP is closer to the receiver position
since, according to Fermat principle, for the traveltime
between sources and receivers to be the smallest, the por-
tion of the ray that travels with P wave velocity should
be larger than the portion of the ray that travels with
S-wave velocity.

The traveltime for a ray that travels from s to g
(Fig. 1) is simply the sum of the times it takes to travel
to the interface with P-wave velocity (tp) plus the time
it takes to go up again to the geophone with S-wave
velocity (ts):
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(1)

(2)
or

  +  + 
.

FIG. 1. P-S reflection over an horizontal interface, in an ho-
mogeneous and isotropic media.

where x > 0 is the position of the conversion point
measured from the receiver position. After introducing
Snell’s law in equation (2) we get a fourth order polyno-
mial in x

other two sums in equation (5) but, instead, each of the
two sums is taken up to the nth layer, the position of the
conversion point becomes another unknown of the pro-
blem. Equation (5) does not have the conversion point
as unknown because such a point has been explicitly cal-
culated by introducing Snell’s law. After introducing the
distance traveled by the ray within each layer in equation
(5), we obtain

,

   +  +       (3)

(4)

where:

Equation (3) has four roots, but only one of them yields
x > 0 for  < 0. The analytic form of these roots was
calculated using Maple( TM).

Fig. (2) shows the trajectory of the jth P-ray con-
verted to S at the nth interface of a horizontally layered
medium. The traveltime of such a ray is a simple gene-
ralization of equation (l), as follows:

FIG. 2. P-S converted wave traveling in a layered media

where is the traveltime of the jth, P-wave ray on As equation (8) shows, the first third of the vector
the ith layer. The quantity  has an analogous defi- of model parameters  contains information about vari-
nition for S-waves. The last term of equation (5) ations in layer thicknesses ordered from the shallowest
corresponds to the traveltime in the layer where the re-to the deepest layer, the second third contains informa-
flection occurs [equation (2)]. If the traveltime within tion about variations in compressional velocities, and the
this particular layer is not explicitly separated from thelast third contains information about variations in shear

tj = n-l  1
  + 

1   + (6)

   +  + 

where and  are the P- and S-wave velocities, res-
pectively, in the ith layer.  and  are the ho-
rizontal distance traveled by the P- and S-wave in the
jth ray in the ith layer.  and  are defined in Fig.
(2). This equation is the heart of the inversion procedure
proposed in this paper.

Parameter estimation

Equation (6) relates nonlinearly the unknown model
parameters  and  with the measured travel-
times tj. Linearization of equation (6) yields a simpler
relation between traveltimes and model parameters:

(7)

where columns of the matrix J (the Jacobian) are the
partial derivatives of the traveltime function (6) with
respect to the model parameters 

 is the vector of differences between measured and
calculated traveltimes in each iteration. Point to point
ray tracing was performed over the synthetic models to
compute traveltimes of converted waves and the distance
traveled by the ray in each layer. Equation (7) is solved
by LSQR (Paige and Sounders, 1982).

SVD analysis of the Jacobian matrix

Singular value decomposition (Golub and Van Loan,
1989) was perform on the Jacobian matrix J to under-
stand the sensitivity of the different model parameters
with respect to the traveltimes. In this particular work,
we concentrated our analyses on the variations of the
singular vectors that span the model space with respect
to the size of their corresponding singular value.
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wave velocities. Fig. (3) shows how the singular vectors
of J that span the model space change with respect to
the size of the singular value for a simple model of 3
sources and 3 receivers over a 10 layers, linearly increas-
ing velocity model. For this case, the model space has
dimension 30.

FIG. 3. Singular Value Decomposition when the model is de-
scribed by 10 horizontal layers and the recording geometry consist
of 3 sources and 3 receivers. Left: Logarithm of the singular value.
Right: Corresponding singular vectors that span the model space

From Figure (3) we observe the singular vectors re-
lated to the first 10 singular values have more variations
over the portion that corresponds to S-wave velocity, the
following 10 singular vectors contain more variations over
the portion that correspond to P-wave velocities, and
the last eigenvectors have more variations over the la-
yers thicknesses. On the other hand, the largest singular
values are related to singular vectors that contain no in-
formation about layer thickness and the smallest ones
contain almost no information about shear wave veloci-
ties. From these results we can conclude that S-wave
velocities will converge faster to the final solution than
P-wave velocities if the system of equations (7) is solved
by iterative methods such as conjugate gradients. Ac-
cording to Stork (1988), the first iterations of conjugate
gradients resolve information contained in singular vec-
tors related to the largest singular values whereas much
more iterations are needed to retrieve the information re-
lated to the smallest singular values. Layer thicknesses
will have the slowest rate of convergency. We can ob-
serve this behavior in Fig. (4) that shows how the dif-

ferent parameters converge towards the true solution as
a function of the number of iterations for the simple 10
layers, linearly increasing velocity model. After a few it-
erations, S-wave velocities are closer to the true solution
than both P-wave velocities and layer thicknesses.

FIG. 4. Parameter convergency

Perturbations in shear wave velocities produce less
changes in the ray path than perturbations in both com-
pressional velocities and layer thicknesses, as Fig. (5)
shows. Therefore, shear velocities converge faster since
ray paths are closer among themselves. On the other
hand, for variations in compresional velocities and layer
thickness, the difference among ray paths is greater and,
as a result, the convergence of these parameters is slower.
Unknown ray paths are more stable with respect to
changes in shear velocities than with respect to changes
in the other paramaters.

Synthetic examples

We generated synthetic traveltimes for a recording
geometry that consists of 100 geophones (15 m apart)
and 3 sources (15 m apart also). The minimum offset
was 30 m. The model have 10 layers of equal thickness
and equal to 500 m. As Fig. (6a) shows, when start-
ing the iterations with an initial model far from the true
solution, the algorithm can estimate the model parame-
ters with error less than 10% when compared to the
true values. When the initial P-wave velocities and the
layer thicknesses are close to the true values, the esti-
mated shear velocities are retrieved almost perfectly, as
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Fig. (6b) shows.

: i :
FIG. 5. Ray path behavior related to changes in model para-

meters

Conclusions
We have presented a method to estimate tomog-

raphycally compressional velocities, shear velocities and
layer thicknesses from traveltimes of P-S reflected waves.
If the initial model for compressional velocities is close
to the true solution, shear velocities can be accurately
estimated. Additionally, we have seen that the S-wave
velocity is the parameter that converges faster to the fi-
nal solution when compared to the speed of convergency
of P-wave velocity and layer thicknesses, which are the
slowest to converge. As expected, parameters related
to shallow layers converge faster than parameters that
describe deep layers.The differences in speed of con-
vergency are explained in terms of the singular values of
the Jacobian matrix and the relative changes of unknown
ray paths with respect to changes in models parameters.
The largest singular values of the problem are related to
changes in shear velocities, and these changes have the
smallest influence in the ray trajectories when compared
to the influence of changes in the other parameters.
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FIG. 6. Result of the inversion for a model described by
10 horizontal layers and the recording geometry consisting of 3
sources and 100 receivers. (a) initial model far from the true so-
lution. (b) initial P-wave velocities and layer thicknesses close to
the true values .
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