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ABSTRACT

Multimineral log analysis is a quantitative formation evaluation
tool for geologic and petrophysical reservoir characterization.
Rock composition can be estimated by solving equations that
relate log measurements to the petrophysical endpoints of min-
erals and fluids. Due to errors in log data and uncertainties in
petrophysical endpoints of constituents, we have used effective
medium models from rock physics as additional independent in-
formation to validate or constrain the results. We examine the
Voigt-Reuss (VR) bound model, self-consistent approximation
(SCA), and differential effective medium (DEM). The VR bound
model provides the first-order quality control of multimineral re-
sults. We first show a conventional carbonate reservoir study with

intervals in which the predicted effective medium models from
multimineral results are inconsistent with measured elastic
properties. We use the VR bound model as an inequality con-
straint in multimineral analysis for plausible alternative solutions.
The SCA and DEM models provide good estimates in low-
porosity intervals and imply geologic information for porous in-
tervals. Then, we present a field case of the Bakken and Three
Forks formations. A linear interpolation of the VR bound model
helps validate multimineral results and approximate the elastic
moduli of clay. There are two major advantages to using our
new method: (1) Rock-physics effective medium models provide
independent quality control of petrophysical multimineral results
and (2) multimineral information leads to realistic rock-physics
models.

INTRODUCTION

Multimineral log analysis quantifies the volume fractions of
minerals and fluids (collectively as constituents) at every depth for
reservoir characterization in the absence of elemental logs. Petro-
physical parameters such as porosity, lithology, and fluid saturation
can be related to logging tool measurements through theoretical equa-
tions. Multimineral log analysis (multimineral analysis hereafter) is
particularly valuable in complex lithology and depositional systems.
Mayer and Sibbit (1980) optimize petrophysical parameters through
the steepest-descent technique that minimizes the misfits between
measured logs and their theoretical values. Quirein et al. (1986)
use quadratic minimizations with linearized response equations,
which significantly reduce computation time. For a better model

in thinly bedded formations, nonlinear responses of nuclear logs
are incorporated in multimineral analysis by Heidari et al. (2012).

The typical input data of multimineral analysis are triple- or
quad-combo logging sets. A triple-combo logging set includes
gamma-ray (GR), resistivity (RT), neutron porosity (NPHI), pho-
toelectric effect (PEF), and bulk density (RHOB) measurements.
A quad-combo logging set implements an additional sonic tool to
measure compressional slowness (DTC) and shear slowness (DTS,
when using a dipole source) along the wellbore direction. The
measured logs are related to the composition of saturated rocks
through a set of theoretical equations. Multimineral analysis
involves an inverse problem that minimizes misfit between log
measurements and reconstructed theoretical log measurements
for rock composition. Due to several sources of uncertainty, the
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inversion result is commonly cross-checked with other available
information, such as core measurements, mud logs, and local
geologic knowledge. Note that multimineral analysis most often
focuses on determining rock composition and does not consider
the texture of the rock. Therefore, solutions from conventional
multimineral analysis may violate rock-physics theories and make
them unrealistic in terms of rock physics. Heidari et al. (2012)
discuss the possibility of implementing the effective medium
model in multimineral analysis workflow to validate the results.

In current practice, sonic logs are embedded in multimineral
analysis through empirical slowness or velocity equations, most
commonly using the Wyllie time-average (WTA) (Wyllie et al.,
1956) or the Raymer-Hunt-Gardner (Raymer et al., 1980) veloc-
ity-porosity relations. However, those relations are heuristic and
may only be valid in certain rock settings. For instance, the
WTA may only apply to low-to-medium porosity sandstones (Dvor-
kin and Nur, 1998) and includes no information about pore shape
and texture. The use of inappropriate velocity-porosity models may
lead to erroneous interpretations (Kittridge, 2014). This paper incor-
porates effective medium models in multimineral analysis and pro-
vides a more general rock-physics evaluation.

This paper uses quad-combo logging sets for multimineral analy-
sis and uses the measured elastic moduli derived from density and
sonic logs to validate the results. The measured elastic properties are
compared with the theoretical effective medium models predicted
from the multimineral results. Effective medium models used in
the paper are the Voigt-Reuss (VR) bound model, self-consistent
approximation (SCA), and differential effective medium (DEM).
A violation occurs when the measured elastic modulus is greater
than the upper limit or smaller than the lower limit predicted from
the effective medium models. Any interval with a violation may
require reevaluating the multimineral model and may be imposed
with constraints in the inversion to search for alternative solutions.

In the following sections, we first introduce the concepts and
workflow of multimineral analysis. Then, we explain the effective
medium models that are used in this paper. Next, we apply multi-
mineral analyses to a deep Jurassic carbonate formation in North
Kuwait and the Bakken Shale Formation in North Dakota, USA.
We demonstrate how to implement inequalities to constrain the in-
verse problem if violations are present and cross-check multimin-
eral results with effective medium models even if there is no
violation. RHOB and dipole sonic logs are available in both cases.
We can evaluate the multimineral model’s plausibility by analyzing
the effective medium models derived from the multimineral results.

The compositional model used in this paper is shown in Figure 1,
as the constituents include clay and nonclay minerals as the solid
phase and fluids as the liquid phase in the pore space.

*

Nonclay minerals

Solid phase (Ko) —

Kerogen (if present)

Liquid phase (K#) — Total porosity (¢)

Figure 1. The compositional model assumed in this paper.
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MULTIMINERAL ANALYSIS

In a monomineralic rock with a single phase of fluid, linear
interpolation between two endpoints of the mineral and fluid can
provide estimates of mineral and pore volumes. However, the sub-
surface is composed of multiple minerals and fluids. A multimineral
problem requires multiple measurements and equations that relate
the unknown composition to the measurements. At every depth,
multimineral analysis optimizes a solution of rock composition that
appropriately matches all input measurements. The first step of
multimineral analysis is to select constituents that compose the sa-
turated rock. Core analysis assisted by mud logs is a common ap-
proach to determine lithology. Core measurements, such as X-ray
diffraction (XRD) and X-ray fluorescence (XRF), help determine
the most probable constituents and provide quantitative quality con-
trol for multimineral results.

After determining the rock constituents, we use the mixing law
that assumes linear relationships between log responses and the pet-
rophysical endpoints of constituents weighted by their volume frac-
tions for forward simulation (Quirein et al., 1986; Mitchell and
Nelson, 1988; Doveton, 1994; Rabaute et al., 2003). We assume
a dispersed shale model for RT if clay minerals are present. We
use Archie (1942) to linearize RT for near-wellbore square root con-
ductivity (CX) when the porosity and saturation exponents are as-
sumed to be two (Doveton, 1994). The total response of CX can be
expressed as

N
CX = Z CX;m;, )

where CX; is the square root conductivity of the ith constituent and
is assumed to be zero for nonclay minerals and hydrocarbons and m;
is the volume fraction of the ith constituent. We assume that the
deep conductivity log represents uninvaded zones. In the absence
of gas in the formation, the theoretical log response for each depth
can be expressed as

d=Gm, 2)

where d is the log response and G is an M X N matrix of constituent
petrophysical endpoints (where M is the number of independent
logging tools and N is the number of constituents). For a triple-
combo logging set with a litho-density tool (LDT), the petrophys-
ical endpoint matrix G can be expressed by

GR; GR, ... GR;
Cx; Cx; ... Cx
Phb1 Pb2 - Phi
G = , 3
b by by ©)
U, u, ... U
1 1 ... 1

where GR; is the gamma ray, CX; is the square root conductivity,
ppi 1s the bulk density, ¢, is the neutron porosity, and U; is the
volumetric cross-section endpoints of the ith constituent. The multi-
mineral analysis uses the linear superposition of the volumetric
cross section (U) derived from PEF and RHOB. The m is an N
by one vector of volume fractions of constituents, given by
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m=[m my... mT, )]
where T denotes a matrix transpose. The log responses are given by
d=[GR CX p, ¢y U 1]T. )

The ones in equations 3 and 5 represent the unity equation
(3°¥, m; = 1), which states that the sum of all volume fractions
should equal one.

This paper uses deterministic inversion and stochastic Monte
Carlo simulations for multimineral analysis. The deterministic in-
version is solved at every depth by the L-2 norm solution of equa-
tion 2 to minimize the objective function given by

% (©)

min||Gm — d|

subject to

0<m;<1. (N

Equation 6 is normalized by the standard deviation of each meas-
urement (Mitchell and Nelson, 1988). The constraint of equation 7
prohibits unrealistic solutions.

In addition to data errors, the individual endpoint value in the
matrix of constituent petrophysical endpoints (G) plays a significant
role (Michelena et al., 2020). Total porosity (¢), for example, can be
generally approximated by using the density-porosity formula,
given by ¢ = (p, —py)/(pm — ps), Where p,, is matrix density
and p; is fluid density, due to the clear separation between the den-
sity of fluid (approximately 1 g/cm?®) and the density of matrix
(e.g., quartz: 2.65 g/cm? or calcite: 2.71 g/cm?®). However, when
other minerals with similar petrophysical endpoints are present, the
uncertainty of solution is higher, and the resultant composition es-
timates may be erroneous. Therefore, we also use the stochastic
Monte Carlo simulations to assess the uncertainty of solutions
due to errors in data and similarity in petrophysical endpoints. Mar-
kov chain Monte Carlo (MCMC) simulations in the Bayesian
framework provide a means by which uncertainties in the data
and formula can be translated into uncertainties in the simulated
results. The solutions found by MCMC simulations are shown
in posterior probability functions at every depth. The multimineral
results from the deterministic and stochastic
methods are consistent. However, MCMC simu-
lations provide associated uncertainties with
many plausible realizations that fit the data

EFFECTIVE MEDIUM THEORY

Triple- or quad-combo log data are the standard inputs for multi-
mineral analysis. Triple-combo log data respond to the aggregate
responses of either gamma-ray (GR, RHOB, and PEF) or neutrons
(NPHI) from formations and are sensitive to rock composition.
However, the logs, except RT through Archie’s equation, do not
contain the geometric information of the rock. Geometric informa-
tion includes pore shapes, cementation, and texture, which is critical
to rock-physics analysis. Therefore, multimineral analysis using tri-
ple-combo log data may result in unrealistic solutions that violate
rock-physics theories.

When quad-combo log data are available, the sonic slowness or
velocity log is commonly embedded as constraining data through
empirical relations, for example, WTA, to assist the inversion of the
rock composition. However, those empirical relations are heuristic
and cannot be justified theoretically (Mavko et al., 2009). Imple-
menting inappropriate relations that do not account for geometric
details may lead to erroneous interpretations.

Instead of using empirical relations, we propose incorporating the
effective medium theory to cross-check or constrain the multimin-
eral results. The effective medium theory uses theoretical models to
predict the elastic properties of a rock. Effective medium models
require information about (1) the rock composition, which can
be solved by multimineral analysis, and (2) the elastic moduli of
constituents, which can be obtained from laboratory experiments.
Thus, one may evaluate and improve the multimineral results in
an iterative approach by implementing effective medium models.
Table 1 lists the elastic moduli used in this paper.

We demonstrate our method by comparing the measured bulk
modulus log with effective medium models predicted from multi-
mineral results. The effective bulk modulus of the saturated rock
(Kgy) is given by

4
K= py <V% ~3 Vé) : @®)

where p,, is bulk density, Vp is compressional-wave velocity, and Vg
is shear-wave velocity. Assuming that the rock is isotropic, equa-
tion 8 computes the bulk modulus log from density and slowness
logs. If the rock is transversely isotropic, it is ideal to use velocity
measurements from different directions with anisotropic equations

Table 1. Elastic moduli of constituents used in this paper; S- and P-wave
moduli are only used in the Middle Marrat analysis.

within the given data misfit. More details about
the MCMC simulations used in this paper can be
found in Appendix A.

Bulk modulus Shear modulus P-wave modulus

Note that a multimineral result with an accept- Constituent (GPa) (GPa) (GPa) Reference
able data misfit may not accurately quantify the  Anhydrite 62.1 33.6 106.9 Rafavich et al. (1984)
formation’s composition. Instead, it is a solution Calcite 74.8 30.6 1155 Dandekar (1986)
consistent with the input logs and the choice of = ) . 94.9 45.0 154.6 Humbert and Plieque
constituents and their petrophysical endpoints. (1972)
Mu%ummevral results are recommendgd to be rec- Clay 12.0 6.0 20 Vanorio et al. (2003)
onciled with other available information, such as
mud logs, core data, and local knowledge, by iter- Kerogen 5.0 - — Yan and Han (2013)
atively altering tool responses. This paper presents ~ Quartz 37.0 — — Carmichael (1989)
using effective medium models from rock-physics Water 2.2 0 2.2 Mavko et al. (2009)
analysis to validate or constrain multimineral 0il 1.6 0 0.8 —

results.




Downloaded 02/11/22 to 174.51.114.206. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/page/policies/terms
DOI:10.1190/ge02020-0918.1

MR52 Cheng et al.

(see King, 1969) to compute the effective bulk modulus. However,
due to the limitations of quad-combo logging, we use equation 8 to
approximate the effective bulk modulus for common practice. Note
that the vertical resolution of the bulk modulus log is subject to the
vertical resolution of the DTS log, which is generally lower than
other logs used in multimineral analysis. Walker et al. (2019) show
that for an 8.5 in. borehole with a 15% velocity contrast, beds with
less than 3 ft thickness are not resolvable. For formations with thinly
bedded layers, inconsistent vertical resolution should be taken into
account in the analysis.

We present results of three different effective medium models: the
VR bound model and two inclusion models, the SCA and DEM,
compared with the bulk modulus log.

First, the VR bound model defines the extreme upper and lower
limits of effective elastic moduli for a multimineral rock when only
the rock composition and elastic moduli of constituents can be
specified. The Voigt and Reuss bounds are the arithmetic and har-
monic average of constituent elastic moduli, respectively. The Voigt
(1889) average in terms of bulk modulus (Ky) can be expressed as

N
KV = ZKimi, (9)
i=1

where K; is the bulk modulus of the ith constituent and N is the total
number of constituents. The Reuss average (Reuss, 1929) in terms
of the bulk modulus (Kp) is given by

1 N m;
Ke = 2K 10
R i

The Reuss average defines a fluid-supported suspension system with
a zero dry frame bulk modulus. Therefore, the effective bulk moduli
of consolidated rocks should lie somewhere above the Reuss bound.
Hashin-Shtrikman (HS) (Hashin and Shtrikman, 1963) bounds are
another viable bound model to incorporate in multimineral analysis.
HS bounds define the narrowest possible range without specifying
anything about the geometries of the constituents (Mavko et al.,
2009) and assume that the rock is isotropic. However, caution should
be taken that there are extreme cases in which the effective elastic
moduli can be outside the ranges predicted by HS bounds. Thus,
for the bound model, we focus our application on VR averages.
The underlying assumption of the VR bound model is that each
constituent is isotropic and linearly elastic. The composite may be

Table 2. Petrophysical endpoints used for the Middle Marrat Formation.

anisotropic because VR averages correspond to the most extreme
cases of transverse isotropy and are independent of geometry at
a given composition (Hill, 1964). The effective elastic moduli of
a multimineral rock should fall between the VR bounds (Mavko
et al., 2009). Sone and Zoback (2013) examine various shale-gas
reservoir rocks, and their laboratory data generally conform to
the theory and lie within the VR bounds.

When the measurement is inside the VR bounds, the linear in-
terpolation between the bounds can be used as an estimation of rock
texture (Marion and Nur, 1991) given by

w= (Ksat_KR)/(KV_KR)v (11)

where w is a weighting factor estimated from the Voigt and Reuss
averages. The difference in the weighting factor may represent the
distinct pore space, rock fabric, and geometry of the rock. Note that
w > 1 indicates a violation in the Voigt average and w < 0 repre-
sents a violation in the Reuss average.

The VR bound model is valid for other elastic moduli, such as
S- and P-wave moduli. Therefore, we also present an application
in the VR bound model that uses P-wave modulus (M, ) where
Mg, = p, V3 when the DTS log is absent or noisy. In theory, the
P-wave modulus log has a higher vertical resolution (approxi-
mately 2 ft) and is less affected by noise than the bulk modulus
log.

The VR bound model establishes the upper and lower limits
given the composition and elastic moduli of the constituents. How-
ever, the large contrast in moduli between solid and fluid compo-
nents can mask minor differences between mineral moduli of the
solids. Therefore, we use the second set of effective medium models
to cross-check the rock composition further.

In addition to the rock composition and elastic moduli of the con-
stituents, the SCA and DEM models need additional specifications
in the pore aspect ratio (AR) of inclusions to predict more realistic
effective elastic moduli. In SCA, rock constituents are selected to be
load-bearing based on their volume fractions. At high porosity,
greater than 60%, Berryman (1980) shows that the fluid phase be-
comes load-bearing. Using the same argument, Das and Batzle
(2009) point out that the medium is biconnected between 40% and
60% porosity in the SCA formulation. Berryman (1980) estimates
effective elastic moduli by changing inclusion shapes through AR
specification. For example, AR = 0.01 represents penny-shaped,
and AR = 1 indicates spherical inclusions, cracks, and pores, re-
spectively, if inclusions represent pore space. The SCA does not
identify any specific host material, but it treats
the composite as an aggregate of all the constitu-
ents (Mavko et al., 2009). However, the host rock
is assumed to be homogeneous, isotropic, and

GR  Conductivity Density Neutron porosity

Volumetric cross

linearly elastic with randomly oriented ellipsoi-
dal pore inclusions.
The DEM allows for the calculation of elastic

Constituent (API) (S/m) (g/cm”) (fraction) section (barns/cm?) properties by assigning one constituent as the
Anhydrite 5 0 2.08 —0.02 14.9 host. In a two-phase medium, the composition
Calcite 5 0 271 0 138 is changed by 1ncremen.tally adding 1nc.lu510ns

] of one phase to the matrix host phase (Zimmer-
Dolomite 10 0 2.87 0.03 9.1 man, 1990; Berryman et al, 2002). In the
Clay 80 03 2.79 03 8.5 DEM model, the inclusions/cracks are isolated
Water 0 9 1.0 1.0 0.4 in the host matrix and represent a no-flow condi-
0il 0 0 0.8 0.95 0.1 tion. In our approach, we develop the following

workflow for calculating DEM:
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Effective medium model implementation

1) Estimate the constituent volume fractions from multimineral
analysis.

2) Use the Voigt-Reuss-Hill average (Hill, 1952) to compute the
elastic properties of the matrix phase.

3) Use Wood’s formula (Wood, 1955) for the elastic properties
of the inclusions.

4) Calculate elastic moduli using the DEM model with the
specified AR.

Theoretically, the inclusion models provide good approxima-
tions for low inclusion density/porosity (Saxena et al., 2018),
and we use AR = [0.01, 1] as lower and upper bounds for the
SCA and DEM.

Figure 2 illustrates a crossplot of effective medium models of a
calcite-water composite in bulk modulus. The VR bounds define the
uppermost and lowermost limits of effective elastic moduli. SCA
and DEM narrow the prediction of effective bulk modulus by speci-
fying AR = [0.01, 1], respectively. Note that we only focus on ap-
plication to the rocks whose porosity is less than their critical
porosity. The modified Voigt average and percolation in DEM
are not implemented in our models.

The proposed multimineral analysis workflow is illustrated in
Figure 3. We suggest an additional evaluation of effective medium
models at every depth after the conventional calibration process to
validate the results. In addition to selecting different constituents
and iterating their petrophysical endpoints and tool responses,
postinversion calibration can be made by enabling inequality con-
straints in the inverse process when violations are present. We
show our workflow in the following section with two field ex-
amples.

80 Effective medium models

—Voigt-Reuss averages
——SCA (AR =0.01 and 1)
——DEM (AR = 0.01 and 1) |

70
60

50

i

Host rock

L

40

Bulk modulus (GPa)

30
T
20
101
0 1 L L L L . I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Porosity (fraction)

Figure 2. Effective medium models for a calcite-water composite in
bulk modulus. The Voigt and Reuss averages define the most ex-
treme cases in elastic behaviors for a composite rock. The SCA and
DEM are inclusion models that use the inclusions’ AR to predict
effective moduli of a composite rock; AR =0.01 (penny-shaped) and
AR =1 (spherical) of the SCA and DEM are shown in black and red
curves, respectively.

MR53

FIELD EXAMPLES

To demonstrate our method in multimineral analysis that incor-
porates the effective medium models, we present two field cases: the
conventional Middle Marrat Formation in North Kuwait and the un-
conventional Bakken and Three Forks formations in North Dakota,
USA. No empirical slowness/velocity relations are embedded, and
bulk modulus logs are used as additional information in analyses.
We show multimineral solutions from MCMC simulations and
deterministic inversion for the two cases. In addition to obvious
geologic differences, the examples in the two areas help illustrate
how to use effective medium models in evaluating the results.

Middle Marrat Formation, North Kuwait

The first field example is a carbonate reservoir in North Kuwait,
where the Marrat Formation was deposited on a vast carbonate-
evaporite platform during the early Jurassic time (Murris, 1980).
The Marrat Formation is conventionally divided into upper, middle,
and lower units, separated by maximum flooding surfaces. In this
field example, we focus on the Middle Marrat unit (MMR), the
main producing unit. The porosity can be up to 25%. The MMR
consists of a sequence of dense micritic limestones with subordinate
wackstones, packstones, and oolitic grainstones, frequently with an-
hydrite, dolomite, and rare clay (Alsharhan et al., 2014). It is critical
to correctly estimate the volumes of iterative anhydrite between
porous intervals for reservoir development. The anhydrite volume
may impact the vertical connectivity of different flow zones.

According to the mud logs and production data, we select calcite,
dolomite, anhydrite, clay, water, and light oil as the constituents of
the rocks in the interval of interest. Available well logs are GR, RT,
RHOB, NPHI, U, DTC, and DTS. The petrophysical endpoints of
constituents used in this example are listed in Table 2. The inverse
problem is even-determined because the number of equations

Select constituents

r——'| Edit petrophysical endpoint matrix (G) |‘7

| Calibration |

Effective medium

model violation? Constrain

| Data misfit | Core data |

Satisfied?
§ Yes

| Effective medium models |

)

Satisfied?

i Yes

Figure 3. The proposed workflow for multimineral analysis incor-
porating effective medium models. The evaluation of effective
medium models is added to the postinversion calibration. When vi-
olations of effective medium models are present, in addition to re-
viewing the constituents and their petrophysical endpoints,
inequality constraints can be imposed on the inverse process.
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equals the number of unknown constituent volume fractions. DTC
and DTS are not used in the inversion, but they are used to compute

the bulk modulus log.

Probability
0 0.1 0.2 0.3 0.4 0.5 0.6
O~ .

RHOB (g/cm®) NPHI (viv) CX(S/m)

2 25 3 04 0.2 0 0 0.5 1
T 1 T

GR (API)
0

Stochastic and deterministic multimineral analyses are performed.
In total, 5% of summed data misfits are determined acceptable for
MCMC simulations. Figure 4 shows the input logs and reconstructed

U (blcm®)
10 15 20

T

20ft

Depth (ft)

L

20 40
é '
L L

T

Figure 4. The input logs and reconstructed logs from plausible realizations from
MCMC simulations for the Middle Marrat Formation. The reconstructed logs are shown
in the posterior probability functions at every depth. The color scheme represents the

Probability
0 001 002 003

probability.
Anhydrite (v/v)  Dolomite (viv) Calcite (v/v) Clay (viv) Water (viv) Oil (viv) Volume fractions (v/v)
Track 1 Track 2 Track 3 Track 4 Track 5 Track 6 Track 7
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Figure 5. The posterior probability functions of constituent volume fractions (tracks 1—
6) from MCMC simulations and the deterministic result (track 7). The core porosity
measurements are compared with the multimineral result. Anhydrite and calcite exhibit
high uncertainties in volume fraction due to the similarity in their petrophysical end-

points.

logs in probability from plausible realizations
from the MCMC simulations, and the two have
good matches. Tracks 1-6 of Figure 5 show the
posterior probability functions of constituent vol-
ume fractions. The uncertainties in anhydrite and
calcite are higher than other constituents, mainly
due to the similarity in their petrophysical end-
points. Track 7 of Figure 5 illustrates the deter-
ministic solution. Core porosity measurements
help cross-check the results.

The bulk modulus and porosity crossplot with
the VR bounds are shown in Figure 6. To show
effective medium models of a composite rock
with more than two constituents on the crossplot,
we must group the constituents into two end-
points: generally, the host rock and inclusions
(porosity). Therefore, the conventional crossplot
cannot (1) present the exact bound values for a
composite with more than two constituents and
(2) compare effective medium models directly
with each log measurement that varies in compo-
sition at every depth. Therefore, we present elas-
tic measurements and effective medium models
in depth plots.

In this conventional carbonate reservoir, we
assume that the host rock is isotropic and com-
pute the VR, SCA, and DEM models from the
multimineral result. Track 1 of Figure 7 is the
same deterministic result from Figure 5. Tracks
2-5 of Figure 7 illustrate the VR bound models
in bulk modulus and P-wave modulus, SCA, and
DEM in bulk modulus in separate depth plots.

The VR bound model represents the widest
limits, and the effective moduli should fall be-
tween them. Thus, most measured bulk modulus
values are between the VR bounds. However,
there are intervals in which the measured bulk
and P-wave modulus are greater or smaller than
the limits predicted from the multimineral re-
sults. Those violations are colored by flags on
the side of each track (Figure 7, tracks 2 and
3). Most of the violations are upper bound vio-
lations in intervals with high volumes of anhy-
drite and low porosity (<5%). Note that the
VR bound models in the P-wave modulus show
violations relatively consistent with the flags in
bulk modulus. Thus, in the absence of an S-wave
slowness log, the P-wave modulus may still as-
sist in validating the multimineral results.

For the inclusion models, AR = [0.01, 1] are
used for the upper and lower bounds for the
SCA and DEM, respectively. Ruiz and Dvorkin
(2010) find that a constant of 0.13 for AR can
be used to match empirical relations in competent
sand, shale, and quartz/calcite mixtures. In addi-
tion to the upper and lower bounds, we plot
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calculations of AR = 0.13 for both inclusion models for reference.
Track 4 of Figure 7 shows SCA with a narrower distance between
upper and lower bounds than the VR bound model. In addition to
violation flags determined by the VR bound model, SCA detects
more violations, which are not limited to high anhydrite volumes
and low-porosity intervals.

In track 5 of Figure 7, DEM shows bulk modulus predictions
consistent with SCA. The intermediate DEM (AR = 0.13) exhibits
reasonable agreement with the bulk modulus log in low-porosity
intervals (<5%). Like SCA, the DEM violations are not limited
to high anhydrite volume intervals and include intervals with high
porosity (>10%). The underestimate of elastic properties from the
SCA and DEM models at high porosity may imply vuggy porosity
in the carbonate reservoir. Another plausible reason is that some
secondary minerals are not participating in building the rock frame.
Geologic information about primary and secondary mineral content
would be needed to refine the model further.

As well as the additional geologic information needed for inclu-
sion models, potential causes of the violation in effective medium
bounds are tool errors due to borehole roughness (or fractures),
incorrect constituents, and inappropriate volume fractions in multi-
mineral analysis. However, there is no fracture around the flagged
intervals, according to the wellbore image logs. Caliper and density
correction logs indicate that the wellbore in this interval is intact,
without obvious roughness. Furthermore, the mud logs confirm the
selection of constituents at the flagged intervals. A few violations of
the lower limits in all models may be due to the low vertical res-
olution of the bulk modulus log in alternating thin layers. In the VR
bound model, the flagged intervals correspond mostly to the inter-
vals with high anhydrite content and indicate the need to reevaluate
the multimineral results. Because the VR bound model defines the
extreme limits with no specification in rock texture, we focus on
constraining multimineral analysis using the VR bound model in
bulk modulus.

The possible reason for the violations in the Voigt average is
improper inverted volume fractions. To increase the upper bound
in intervals in which violations occur, we need to increase the vol-
ume fractions of stiff constituents (dolomite or calcite). To achieve
this goal, we impose linear inequality constraints from the VR
bounds using the interior-point method (Altman and Gondzio,
1999; The MathWorks, 2018) to find an alternative solution at every
depth in the deterministic inversion. The violation of inequality con-
straints is prevented by augmenting the objective function with a
barrier term that causes the optimal solution to be in the feasible
space. In addition to equations 6 and 7, the objective function is
to find a vector of volume fractions, which minimizes the inverse
function, which is subject to linear inequalities at every depth:

nm
K K, K, ... K;
[fa‘]s[j i ST ap
Ko K kK K :

mA

l

where K, is the bulk modulus log. Equation 12 shows the inequal-
ity constraints for the VR averages. In this case, the Reuss constraint
is not active because the lower bound violations may be due to the
difference in vertical resolution between input logs.

The constrained multimineral results are shown in track 2 of
Figure 8. For depths with no upper bound violation originally,
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the results remain unchanged. For depths where the upper bounds
were crossed, the constrained inversion uses the bulk modulus log
as the upper limit to search for alternative solutions that still honor
the input data. Track 3 of Figure 8 shows the new upper bound de-
rived from the alternative solution. The alternative solution shows a
reduction of anhydrite by 10%-30% and an increase of calcite or
dolomite by the same amount. Tracks 4-8 of Figure 8 show the
comparison between the input and reconstructed logs with and
without the constraint, and the differences are reasonable, thereby
indicating that the alternative solution is plausible.

Calcite, dolomite, and anhydrite are relatively similar in petro-
physical endpoints, but they are very different in elastic properties
(see Table 1). Using effective medium bounds on the bulk modulus
provides a means to reevaluate and constrain the results from multi-
mineral analysis. Unfortunately, there is no core measurement avail-
able at those intervals to validate the change of volume fractions
from constrained multimineral analysis.

Bakken and Three Forks Formations, North Dakota,
USA

Multimineral analysis is especially challenging for unconven-
tional reservoirs due to their complex lithology and uncertainties
in petrophysical endpoints. Therefore, we propose to use effective
medium models as additional data to quality-control the multimin-
eral results even if there may not be violations in the effective
medium model. The second field example is the Bakken and Three
Forks formations.

The Three Forks Formation consists of peritidal dolostones and
is separated from the overlaying Bakken Formation by a major
unconformity. The Bakken Formation is characterized by low-
porosity and permeability reservoirs, organic-rich source rocks,
and regional hydrocarbon charge. The Bakken Formation consists

80 T T
KCaIcile L 2 -

6005

Middle Marrat

T T
——Voigt-Reuss
——SCA (AR = 0.01 and 1)
——DEM (AR = 0.01 and 1)

Bulk modulus (GPa)
5 g

w
(=]

20

0 0.05 0.1 0.15 0.2 0.25 0.3
Porosity (fraction)

Anhydrite Dolomite Calcite

Figure 6. Bulk modulus and porosity crossplot of the Middle Mar-
rat Formation. The Voigt and Reuss averages, SCA, and DEM are
calculated from the composite of calcite (K = 74.8 GPa) and the
mixture of water and oil (K = 2 GPa). Facies color the data points.
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of four members: upper and lower organic-rich black shale called
the Lower Bakken Shale (LBSH) and the Upper Bakken Shale
(UBS); the oolitic, bioclastic, sandy Middle Member (M. Bakken);
and the Pronghorn Formation, a basal member with dolostone,
limestone, and siltstone (Sonnenberg, 2017).

The well is in McKenzie County, North Dakota. Available well-
log data include GR, RT, RHOB, NPHI, and U for multimineral
analysis. The GR measurements include standard (SGR) and com-
puted (CGR, gamma-ray contribution from thorium and potassium)
gamma-ray. We only use dipole sonic logs to calculate the bulk
modulus log. In addition to logs, XRD data identify quartz, calcite,
dolomite, clay, kerogen, and traces of K-feldspar and chlorite for the
solid phase. The clay mostly consists of illite. Because of their neg-
ligible trace volume fractions, K-feldspar and chlorite are ignored in
the multimineral analysis.

Triaxial compressive tests with core plugs that are horizontal, ver-
tical, and 45° to the bedding at various depths are available. With
measured bulk densities, the elastic parameters, such as Young’s,
bulk, and shear moduli, are estimated by the ultrasonic devices
under a hydrostatic confining pressure of 15,395 KPa.

For simplicity, we continue to use the linear mixing law (equa-
tion 2) for multimineral analysis of the Bakken and Three Forks for-
mations. See Heidari et al. (2012) for a more accurate thinly bedded

model using nonlinear equations. Table 3 lists the petrophysical
endpoints used in the multimineral analysis. Kerogen is characterized
by high GR readings [approximately 3500 American Petroleum In-
stitute (API)] from uranium in the UBS and LBSH.

Figure 9 shows the comparison of the input logs and recon-
structed logs from MCMC simulations. Tracks 1-7 of Figure 10
are realizations of constituent volume fractions with uncertainties
compared with XRD data. The solution from the deterministic in-
version is shown in track 8 of Figure 10. The faithful reconstruction
of the input curves and a good match to core data confirm log data
quality and consistent model parameterization. Figure 11 shows the
bulk modulus crossplotting with porosity. The quartz and carbon-
ate-rich Middle Bakken and Three Forks formations exhibit stiff
elastic properties. In contrast, the UBS, LBSH, and Pronghorn show
soft elastic properties consisting of more clay and kerogen contents.

The host rock of the Bakken Formation is considered anisotropic
(Sayers and Dasgupta, 2015). For proper implementation of SCA
and DEM in shales, the model needs to incorporate maturation in-
formation while creating the solid. Therefore, we use the VR bound
model, which does not require any geometric information of the
host rock. Figure 12 shows that the bulk modulus log mostly stays
between the VR bounds predicted from the multimineral results.
Thus, the solution meets the bound model. There is no need for
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Figure 7. The multimineral results evaluated with effective medium models. Track 1 is the deterministic result from Figure 5. The effective
medium models (tracks 2-5) are derived from the multimineral results. Track 2 is the bulk modulus log compared with the VR bound model.
Track 3 is the P-wave modulus log compared with the VR bound model in P-wave modulus. Track 4 represents the SCA in bulk modulus with
AR =10.01, 1.0]. Track 5 illustrates the DEM in bulk modulus with AR =[0.01, 1.0]. Intermediate curves are shown for AR =0.13 for the SCA
and DEM. The violations are shown on the side of tracks 25 in color flags in which the bulk modulus log is greater than the upper limits
(blue) or lower than the lower limits (red) derived from the models.
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actively constraining the inversion, except for a few lower bound
violations at the boundary of the Middle and LBSH formations,
mainly due to the vertical resolution issue. We can still use the
VR bound model to validate the multimineral results.

First, the triaxial compressive results can be directly compared
with the bounds. The bedding at the wellbore is with near-zero ap-
parent dip. The horizontal plugs measure the bulk modulus parallel
to the bedding, whose values should be close to but smaller than the
Voigt bound predicted from the multimineral results. Track 2 of Fig-
ure 12 shows that all bulk moduli estimated from
horizontal plugs are within the predicted Voigt
bound, and the measurements at the Pronghorn

and Three Forks formations fall close to the Formations.

MR57

weighting factors are away from the reference. The Middle Bakken
Formation is consistent with the suggested range. However, the
UBS and LBSH exhibit lower weighting factor values, ranging from
0.15 to 0.25, due to high porosity and high kerogen content. More
statistical data are required to have more conclusive estimates on the
UBS and LBSH.

Another potential use of the VR bound model is to approximate
the local elastic moduli of the clay for unconventional reservoirs.
Unlike the well-defined elastic properties of calcite, dolomite,

Table 3. Petrophysical endpoints used for the Bakken and Three Forks

bound. Good matches indicate that the solution
is plausible.

Second, Simone et al. (2020) analyze the
acoustic velocity of core data and provide refer-

CGR SGR Conductivity Density Neutron porosity Volumetric cross
Constituent (API) (API) )

(S/m) (g/cm (fraction) section (barns/cm?)

ence values for the weighting factors of different Quartz 12 15 0 2.65 —0.02 4.8
unconventional reservoirs. The weighting factors Calcite 10 15 0 271 0 13.7
gogf‘e 33(1;1:’5“ l;or“;‘(ag"“fa;‘? esungte‘i betwtee“ Dolomite 10 12 0 2.89 0.02 9.0
.34 and 0.45. Track 2 of Figure 12 shows two
reference curves of weighting factors [0.34, 0.45] Clay 260 350 0.1 275 04 8.7
compared with the bulk modulus log. The curve Kerogen 50 3500 0 1.2 0.5 03
of computed weighting factors (equation 11) is Water 0 0 12 1.0 1.0 0.4
shown in track 3 of Figure 12. One may iterate Oil 0 0 0 0.8 0.95 0.1
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Figure 8. The multimineral results before and after constraint by the VR bound model. Track 1 shows the unconstrained results. Track 2
demonstrates the results constrained by the VR bound model. Track 3 shows the bulk modulus log compared with the effective medium bounds
derived from the constrained results. Tracks 4-8 show the input logs, reconstructed logs from unconstrained results, and reconstructed logs
from constrained results. Zones where the constraints are active are colored in gray.
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Figure 9. The input logs and reconstructed logs from all of the plausible realizations
from MCMC simulations for the Bakken and Three Forks formations. The reconstructed
logs are shown as posterior probability functions in colors.

or quartz, clay has high variability in elastic
properties due to its complex composition.
For example, clay is stiffer when in dryer con-
ditions. Theoretical values for the bulk modulus
of clay are reported between 20 and 50 GPa
(Wang et al., 2001). Track 2 of Figure 13 shows
the VR bounds derived from the multimineral
result of the LBSH and Pronghorn formations
(Figure 13, track 1) using an initial value of
25 GPa for the dry clay bulk modulus. The pre-
dicted Reuss bound of the Pronghorn Formation
overlays the bulk modulus log, resulting in close
to zero weighting factors. Note that the Reuss
bound represents the zero dry bulk modulus ac-
cording to the Gassmann equation. Such low
weighting factor values may result from the in-
correct bulk modulus selected for the soft min-
eral (clay) in the Pronghorn Formation. The
reason might be that the clay in the Pronghorn
Formation might not have experienced high
pressure/temperature to a dryer/stiffer condi-
tion. Therefore, we use a lower bulk modulus
value of 12 GPa (Vanorio et al., 2003) and
recalculate the corresponding VR bounds.
Track 3 of Figure 13 shows a more realistic
bound model for the Pronghorn Formation
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Figure 10. The posterior probability functions of constituent volume fractions (tracks 1-7) from MCMC simulations and the deterministic
result (track 8). The core XRD measurements are compared to cross-check the multimineral results.
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Figure 11. Bulk modulus and porosity crossplot. The data points
are colored by formations. The Voigt and Reuss averages, SCA,
and DEM are computed from the composite of the matrix (the aver-
age of calcite and quartz, K = 55.9 GPa) and the mixture of water
and oil (K = 2 GPa).
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and indicates that a lower clay bulk modulus value should be used.
The method is most useful when the intervals contain a high
volume of clay minerals.

DISCUSSION

‘We implement the effective medium theory using quad-combo log-
ging data to evaluate multimineral models. In addition to the conven-
tional elastic moduli-porosity crossplot, depth plot is recommended to
facilitate a more accurate and intuitive comparison among the mea-
sured bulk modulus, the variation in rock composition, and the bounds
derived from theoretical effective medium models.

Three effective medium models are computed from the multimin-
eral results and compared. The VR bound model represents the
most extreme theoretical limits for effective moduli of a saturated
rock. If there are violations of the VR bound model, it indicates the
need to reevaluate the multimineral result. The SCA and DEM nar-
row the range of plausible effective moduli by specifying the AR.
Our experiment in the MMR case shows that AR = [0.01, 1.0] of
SCA and DEM are realistic upper and lower bounds for a low-
porosity approximation. However, for porous intervals, a more ac-
curate approximation is required. SCA and DEM may be adequate
for quality control purposes. Still, without additional geologic in-
formation about load-bearing versus nonload-bearing minerals,
the bounds might not be calculated properly to constrain multimin-
eral results.

®  Vertical plug
¢ Horizontal plug
®  45° plug

Figure 12. The weighting factor evaluation for the
Bakken and Three Forks formations. Track 1
shows the deterministic results from Figure 10.

Track 2 shows the bulk modulus log compared
with the VR bound model computed from track
1 and the triaxial test results. The intermediate

1 reference curves (w = [0.34, 0.45]; Simone et al.,
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The VR bound model violations indicate that errors may have
occurred in selecting constituents, estimated composition, or other
reasons (e.g., due to tool errors or borehole issues). For the MMR
case, the MCMC simulations show high uncertainties in calcite and
anhydrite volume fractions. The violation of the VR bound model
most likely occurs in which the petrophysical endpoints of constitu-
ents are similar, but the constituents are distinct in terms of their
elastic properties. Therefore, one may use the constraints to the in-
verse problem within the feasible area in the model space to find an
alternative solution that honors the input logs. Such inequality con-
straints can be easily implemented in commercial software. Using
the VR bound model, the P-wave modulus is another viable option
when the DTS log is absent or too noisy.

Even if there is no violation in the VR bound model, estimating
the weighting factor (w) can be useful for quality control of multi-
mineral results and the approximation for elastic moduli of constitu-
ents. The change in the weighting factor along the depth may
represent the difference in the geometry of the rock. When the
weighting factor is between zero and one, the value of the weighting
curve may be used to inspect the results at different levels, espe-
cially for formations that already have a range of weighting factors
estimated from laboratory experiments or a set of offset wells. For
example, the Middle Bakken and Three Forks formations exhibit
stiffer elastic properties, with w ranging from 0.34 to 0.45. How-
ever, the UBS and LBSH are softer, with w ranging from 0.15
to 0.25. The findings still require more statistical evaluation. Ana-
lyzing the weighting factor also helps approximate the elastic prop-
erties of minerals such as clay that have variability due to their
complex mineralogy.

I oil I Dolomite

Cheng et al.

The VR bound model accommodates the most extreme cases in
completely layered formations (Sone and Zoback, 2013). There-
fore, our bound model method applies to rocks with isotropic
and transversely isotropic elastic properties. We recommend com-
puting the VR bounds simultaneously and comparing the bulk
modulus log, core measurements, and bounds after every iteration
of multimineral analysis. Results of triaxial compressive tests may
be directly compared on the depth plot to assist multimineral inter-
pretation. However, note that we use the isotropic approximation
(equation 8) to compute the bulk modulus log due to the common
limitation of well-log data. The weighting factor variation along the
depth and between different wells may result from the rock texture
and anisotropy for transversely isotropic rocks. More studies are
required to understand the effects of anisotropic properties under
the isotropic assumption.

CONCLUSION

We present a study of implementing effective medium models in
multimineral analysis. Among the models tested in this paper, the
VR bound model is more practical than inclusion models and can be
the first-order quality control for multimineral analysis. If violations
are present, one may impose inequality constraints to seek an alter-
native solution after ruling out other possible causes. Linear inter-
polation between the VR bounds may help guide multimineral
analysis for unconventional reservoirs. The new method provides
a means to incorporate rock physics in multimineral analysis in ad-
dition to empirical slowness/velocity relations.
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APPENDIX A

BAYESIAN INVERSION FOR
MULTIMINERAL ANALYSIS

Pronghorn

Due to data errors and uncertainties in petro-
physical endpoints, assessing the uncertainty of

Figure 13. Iterative tests for the approximation of the clay bulk modulus. Track 1 is the
multimineral result. The K.y =25 GPa is used for the VR bound shown in track 2. Track

3 shows the VR bound with K,y = 12 GPa.

multimineral analysis is critical. The conven-
tional linear solvers can only optimize the inverse
problem for limited solutions and do not provide
uncertainties of volume fractions in the analysis.
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The MCMC simulations in the Bayesian framework allow us to
propagate the uncertainty from data and formula to the estimated
multimineral result. We can use the estimated posterior probability
functions to evaluate the uncertainties. For a given data set (D), the
posterior probability function p(m|D) of the model parameter m
can be sampled from

p(m|D) o« p(D|m)p(m), (A-1)
where p(D|m) is the likelihood function and p(m) is the prior dis-
tribution of the model parameter. For multimineral analysis, m rep-
resents a vector of volume fractions of constituents. We assume the
linear mixing law for multimineral analysis (equation 2). The like-
lihood function p(D|m) can be described by

p(D|m) « exp —%(Gm -D)'W-Y(Gm -D)|, (A-2)

where Wis a diagonal matrix containing terms related to the weight-
ing of well logs. The unity equation is one of the constraining equa-
tions to ensure material balance.

There are two main sources of uncertainties in the multimineral
analysis. The primary uncertainty comes from data errors. After de-
termining the acceptable data misfits, MCMC simulations aim to
search the model space and produce posterior probability functions
within the targeted data misfit. The secondary uncertainty results
from the similarity in constituent endpoints. Even when the inverse
problem is well determined (the number of logs plus the unity con-
straint is equal to or greater than the number of unknown volume
fractions), the uncertainty of each constituent volume fraction is
different. In this paper, the posterior probability distributions of
constituent volume fractions are displayed as color schemes at every
depth.

NOMENCLATURE
CX = Near-wellbore square root conductivity log
d = Vector of well-log data
DTC = Compressional slowness log
DTS = Shear slowness log
GR = Gamma-ray log
G = Matrix of constituent petrophysical endpoints
RT = Ture formation resistivity log
b = Bulk density log
dn = Neutron porosity log
¢ = Total porosity
m = Vector of constituent volume fractions
m; = Volume fraction of the ith constituent
M = Number of independent log curves
N = Number of unknown constituent volume fractions
LDT = Litho-density tool
My, = P-wave modulus of a saturated rock
K = Bulk modulus
K = Bulk modulus of a saturated rock
Kg = Reuss average

Ky = Voigt average

PEF = Photoelectric absorption factor log as a massic cross
section

Vp = P-wave velocity

Shear-wave velocity

MR61
w = Weighting factor
U = Volumetric cross section
XRD = X-ray diffraction
XRF = X-ray fluorescence
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