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SUMMARY 

Traditionally in the problem of tomographic traveltime in- 
version. the model is divided into a number of rectangular cells of 
constant slowness. Inversion consists of finding these constant 
values using the measured traveltimes. The inversion process 
can demand a large computational effort if a high resolution 
result is desired. 

We show in this paper how to use a different kind of parame- 
trization of the model based on beam propagation paths. This 
parametrization is obtained within the framework of reconstruc- 
tion in Hilbert spaces by minimizing the error between the true 
model and the estimated model. The traveltimes are interpreted 
as the projections of the slowness along the beam paths. Al- 
though the actual beam paths are described by complicated spa- 
tial functions, we simplify the computations by approximating 
these functions with functions of constant width and height, i.e., 
“fat” rays, which collectively form a basis set of natural pixels. 

With a simple numerical example we demonstrate that the 
main advantage of this parametrization, compared with the tra- 
ditional decomposition of the model in rectangular pixels, is that 
2D reconstructed images of similar quality can be obtained with 
considerably less computational effort. This result suggests that 
the natural pixels can provide considerable computational ad- 
vantage for 30 problems. 

INTRODUCTION 

The process of reconstructing an image using line integrals 
through it is called tomography. In traveltime tomography the 
image to be reconstructed is the slowness model S(r). The re- 
constructed model S(P) is usually represented as a linear com- 
bination of functions /l,(r) in the form 

n=l 

The problem consists of determining the unknown coefficients 

a, from the measured traveltimes. Once these coefficients have 

been calculated, the computation of the sum (1) is straightfor- 
ward. 

The kind and uumber of functions used for expanding the 
slowness model determine many of the general features of the 
fmal image. With the same data set it is possible to obtain dif- 
ferent results just because different parametrizations have been 
used. However, the goal is to obtain a reconstructed model 
free from these artifacts derived from the parametrization. This 
means that the selection of the basis function is a critical step 
in the inversion process and then should be considered more 

carefully, as described below. 
Although the model is usually discretized into rectangular 

regions of constant slowness (pixels), there is no general criteria 
for deciding which representation is the best. Some may have 
clear advantages for solving specific problems, specially if they 
include prior informatiorl about the model. Our selection of the 

basis function will be based on the minimization of the expres- 
sion that estimates the norm of the null space of the problem 

Al 

/IS(r) - 1 wMr)ll 

where S(r) is the true slowness model. Due to the nature of the 
measurements in traveltime tomography (integral along beam 
paths) we show in this paper that the minimum of (2) can be 
reached when the functions Pn( r) describe the beam paths and 
when M equals the number of measurements available (because 
there is only one measurement per beam path). In the first part 
of the paper, this fact is demonstrated within the framework of 
reconstruction in Hilbert spaces. The remainder of the paper 
presents some synthetic examples. 

RECONSTRUCTION IN HILBERT SPACES 

A Hilbert space is a linear space on which an inner product 
is defined. For example, the inner product for the Hilbert space 
L2 OC the Lebesque square-integral functions of support S? is 

c f(X),d(X) > = R f(s)/j(s)dr. 
s (3) 

We can assume that the particular function f(z) that we 
want to estimate belongs to a Hilbert space II. Let’s assume 
also that the information we have about f(z), i.e.: data, is a set 
of inner products of the function f(x) with a finite set of known 
functions ,&(2) t II 

d,, = < f(:r,. &[T) > m = 1, ._.( !V. (4) 

In this context, the datacan be interpreted as the projections 
of the unknown function J(Z) onto the “sampling” functions 

&(x). 
If Fr is a closed linear subspace of the Hilbert space H, then 

H = F1 6 Fr* (Berberian, 197G), where Fr’ is called the orthog- 
onal complement of 4. From the projection theorem (Stakgold, 
1979). we can always decompose f(2) into fi(r) $ fi(~) where 
fi(z) e F1 and ,fs(~) c Ft. f,(z) is called the orthogonal projec- 
tion of f(r) in Fr. If we assume that the functions /&(Z) form 
a basis of the space Fi, we can write 

hi 

f(.c) = c GlPn(~) t h(x) 
n=I 

We can understand the meaning of the function fs(r) by multi- 
plying both sides of (5) by $,,(z) and integrating in Q 

Since < ~?(X),&(Z) >= 0, we can say that /s(z) contains the 
information about I(Z) that does not affect the measurements 
made by the sampling functions &(x). Finally, the estimate 
f(z) of /(.z) can then be written as 
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2 Tomographic Traveltime lnvenion 

where the coefficients a, are calculated from the forward equa- 
tion for the data d, 

?n = l,....N. (8) 

This same result for i(z) can be obtained through minimiza- 
tion of the norm llfa(z)ll with respect to the unknown coefficients
a,, (Darling et al., 1983), 

For this reason, the estimate f(z) is called the minimum 
norm estimate of the unknown function f(x). This estimate 
i(z) is unique and consistent with the data (Eqn. (8)). It is 
also strongly related to the way the modeled data are generated, 
because the unknown function f(z) is expressed as a linear com- 
bination of the sampling functions /3,,,(z) used to compute the 
forward modeling (Eqn. 4). This means that each experiment 

will suggest “naturally” the reconstruction procedure which pro 
duces the minimum norm solution when the problem is linear. 

TOMOGRAPHIC TRAVELTIME INVERSION 

The traveltime along a ray I, in a medium where the slow- 
ness is S(z,Y), is traditionally given as 

1, = 
I 

S(r, Y)dl, m = 1, . . . . N, (19) 
iIn 

where dl, is the incremental distance along the ray path I,. In 
general, the ray path depends on the slowness distribution. For 
sakeof simplicity, let’s assume that the variations in the slowness 
are just a few precent. Then we can safely consider that the ray 
paths are straight lines and independent of the slowness. The 
general case will be discussed later. 

Although the expression (10) simplifies the mathematics con- 
siderably, it fails to convey the fact that the traveltimes between 
two points are affected by velocities in the region called the Fres- 
nel zone, which is infinitely narrow only when the wavelength 
X is infinitely small, X -+ 0 (Nolet, 1987). To account for the 
finiteness of this effect, we can say that the traveltime between 
two points can be better described by the equation 

where 4*(z, y) is a two dimensional function or “beam” of ii- 
nite support centered along the ray path and 0 is the support 
of S(z,y). The functions &(z,y) can be interpreted as the 
wavepaths introduced by Woodward (1989). 

With the forward modeling equation written in this way, 
the estimation of the slowness from the traveltimes can be seen 
as a reconstruction problem in a Bilbert space where the inner 
product is defined by (11). According to (7), the minimum norm 
estimate of the slowness S(z, y) is 

3(x, Y) = 5 an+%Ln(2, Y), (12) 

where N is the number of traveltimes. 

From Eqn. (S), we find that the coefficients n, can be cal- 
culated through thr system of equations 

.\I 

trn = 1 Gl < On(X.Y),dh(X,Y) > m = 1, . . ..N (13) 
?I=1 

< +n(z,y)rd~m(xr~) > = /n#.(~,~Mm(s,~) dxdy. (14) 

In contrast with the traditional reconstruction using square 
pixels as basis function, the reconstruction described above is 

based on a discretization of the model along the beam paths. 
The discretization along the beam paths comes from the fact 
that they are the regions sampled with each measurement in 

Natural Pixels 

As a first approximation, we can describe the basis function 
#;(z, y) as functions of width X’ and heigth l/X 

i 

l/X’ if (z, y) is in the region of width 

&(X,Y) = X’ centered along the ray path i (15) 
0 otherwise. 

Therefore, the matrix coefficientsM,, = < &(z, y), &,,(z, y) > 
are 

M x’s = 
i 

area of the beam path ifm=n 
nm area of the intersection if m # 71. (19) 

A natural pixel for a single ray is shown in Fig. 1. Even when 
the rays curve or when reflections are included, the natural pixels 
are “tubes” centered on the ray path. 

ray patp 

Figure 1: Natural pixel for a single ray 

Buonocore, et al., (1951) and Buonocore (1981), without 
working within the framework of reconstruction in Hilbert spaces, 
define an estimator identical to (12) and call it “natural pixel” 
decomposition of the two dimensional image, where the natural 
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Tomographic Traveltime Inversion 3 

pixels are the functions &(r, y). They study extensively the 
properties of such a recoustruction and die theoretical advan 
tages of it compared with the traditional reconstruction using 
square pixels. 

An example of a set of natural pixels is shown in Fig. 2, for 
the case of a cross borehole geometry in a medium of constant 
slowness 

Distance (m) 

Figure ‘2. Natural pixels in a constant slowness medium for a cross- 
well configuration of five sources and five receivers. 

To this point, the inversion is strictly linear, this is, the sam- 
pling functions do no depend on the slowness. This is analogous 
to Fourier reconstruction where the sampling functions (complex 
exponentials) do not depend on the properties of the unknown. 

No iterations are needed after the estimate is found. This is 
not the situation in traveltime tomography where the sampling 
functions may strongly depend on the unknown slowness. The 
problem is usually solved as a sequence of linearized steps. Nat- 
ural pixels can be used in each step. Since the ray paths change 
from one iteration to another, the parametrization along the 
natural pixels adapts progressively to the estimated model. 

NUMERICAL EXAMPLES 

We will now show synthetic inversion examples comparing 
natural pixels and square pixels as basis functions. Our aim is 
to compare the results of the inversion when both are used with 
the same data set. This goal can be achieved with synthetic 
data for a cross borehole geometry generated from the model 
shown in Fig. 3. The example is simplified considerably by 
assuming that the slowness contrast between the circular disc 
(S = 2.02) and the background (S = 2.00) is 1%. Therefore, 
straight rays adequately describe the propagation of the energy 

in the medium. 
The data are generated from strip integrals across the model 

of Fig. 3. For these examples 289 traveltimes were computed, 
which corresponds to the 17 sources and 17 receivers used. An- 
other simplification is made assuming that the width of the strips 
X’ = 40 m is the same during both the forward modeling and 
the inversion. 

T 

0. 

Distance (m) 
8w. 

Figure 3: Slowness perturbation. 17 sources are located on the 
right hand side of the model and 17 receivers are located on 
the opposite side. The radius of the disc is T = 100 m. The 
width of the natural pixels is )i’ = 40 m. The vertical sepa- 
ration between adjacent sources and/or receivers is 50 m. 

When the model is discretized into square pixels the esti- 
mate of the slowness is obtained after solving a system of linear 
equations where the matrix coefficients represent the area of the 
intersection of the strip with each pixel. We are going to solve 
this system and the one obtained with the natural pixels (Eqn. 

13) using the LSQR variant of the conjugate gradient method 
(Nolet, 1987) that has been proved to be faster than SIRT meth- 
ods (Nolet, 1985; Van der Sluis and Van der Vorst, 1987). 

Fig. 4 shows the results of the inversion when the model is 
discretized into square pixels. The starting model has a con- 
stant slowness SO(Z,~) = 2. The inversion produces directly the 
slowness value in each pixel, aud therefore, reducing the size of 
the pixels (for better resolution) increases the number of model 
parameters and consequently the size of the system of equations 
to solve. In this example, the size of the system of equations 
solved is 289 .Y 25921 (grid size = 161 X 161) 

0. 

800 

Distance (m) 

Figure 4: Inversion when a grid of 161 S 161 square pixels is used. 
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4 Tomographic Traveltime Inversion 

The result of the inversiou using natural pixels is showrl in 
Fig. 5. This image is represented with a grid identical to the 
one used in Fig. 4 (161 _I’ 161) and then, both results can be 
compared directly. The system of equations solved with the nat- 
ural pixels is 289 X 289 and these dimensions are independent 
of the level of resolution of the image. 

Both images look alrnost identical in terms of resolution. 
There are no artifacts due to a coarse sampling of the model. 
The main difference between the two solutions is related with the 
smoothness of the image. ‘The reconstruction with the square 
pixels produces an slightly smoother image than the reconstruc- 
tion with the natural pixels. 

However, remember that although the quality of the inver- 
sion is basically the same for both basis functions, the computa- 
tional effort necessary in the whole process is roughly two orders 
of magnitude smaller when natural pixels are used and both im- 
ages are densely sampled with the same number of points. 

0. 

2 
2 
& 
E; 

soil 

Distance (m) 

Figure 5. Inversion when the model is discretized in natural pixels. 
The image is displayed in a grid of 161 X 161 cells. 

CONCLUSIONS 

We have shown that the natural pixels provide an efficient 
way of discretizing the slowness model in the problem of trav- 
eltime tomographic inversion. In the examples studied, images 
of similar quality were obtained using natural pixels compared 
with the traditional reconstruction of square pixels. The main 
advantage of the natural pixels is that the number of model 
parameters needed is two orders of magnitude smaller, which 
means a proportional reduction on the computational effort. 

The number of natural pixels equals the number of data 
points. It means that the number of model parameters in the irl- 
version remains conslanl for a fixed amount of data, regardless 
the spatial dimensions of the problem or the resolution of the 
display. Consequently, the natural pixels provide a direct pro- 
cedure for inversion in three dimensions, problems that can be 
computationally impossible to att,ack if the model is described 
with orthogonal three dimensional pixels (boxes). 
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