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SUMMARY 

When square pixels are used to parameterize the 
slowness field in traveltime tomography, the problems of 
discretization for inversion purposes and discretization for 
display purposes are inextricably mixed. A “high 
resolution” result demands many pixels or model 
parameters, thus burdening tomography with the inversion 
of a large and sparse projection matrix though simplifying 
the display problem by using regions of constant slowness. 
In this paper, we present a method of separating the 
tomography problem into two distinct steps - first inversion, 
then imaging. To reduce the complexity of the inversion 
step, we select a more natural set of pixels which are derived 
from the raypaths used to model the process of creating the 
traveltime data. The support of the string function is the 
raypath itself, thus the strings and raypaths are orthogonal 
(except when both equal the same line) and the projection 
matrix is diagonal and invertable in closed form. We are 
then left to image, i.e., synthesize the inversion result for 
display purposes. The method is tested on cross-well 
synthetic and field data requiring iterative curved raytracing. 
It is demonstrated to be a fast and robust technique of 
traveltime tomography. 

INTRODUCTION 

A solution to the well-known non-linear inversion 
problem of traveltime tomography in strongly refracting 
media involves three distinct steps: first, we must pick 
observed traveltimes; second, we calculate traveltimes for an 
assumed slowness model; third, we invert a matrix equation 
where the data is given by the traveltime residuals (calculated 
minus observed) to obtain corrections to the assumed 
slowness model. Steps two and three are performed 
iteratively and constitute linearization of the original non- 
linear problem of finding both the slowness field and the 
dependent raypaths. The iterations are usually stopped 
when an acceptable match between the calculated and the 
observed traveltimes is achieved. 

The calculation of traveltimes, step 2, requires a 
mathematical model capturing albeit approximately the 
physical process of generating the data. For this purpose, 
we use ray tracing described by the equation 

ti= aS(X,Z)&{X,Z)drdz. / (1) 

In general, the function & (x, z) represents the 2D beampath 
which describes the area of the slowness field influencing 
the traveltime (Michelena and Hanis.1990). However, in the 
formulation presented here, we take the function &(x, z) to 
be nonzero only along the geomenical acoustic raypath, i.e., 
a line, thus equation (1) describes conventional raytracing in 
two spatial dimensions. The third step is the inversion of the 
residual traveltimes for perturbations to the slowness field. 
For the nonlinear problem, we separate the slowness into a 
known background So(x, z) and a perturbation sT(x, z). To 
set up the system of equations, we then parameterize the 
perturbations, that is, we devise a representation of the 
slowness field as a discrete superposition of known 
functions whose coefficients are to be determined by ‘the 
inversion: 

N 

~(*.Z)=Caj~Ix,Z) 

j=l 

(2) 

With equation (2) representing the perturbations, the 
tomography problem is reduced to inverting the linear 
system of equations 

6f =Wa, (3) 

where W is the (MxN) projection matrix, a is the (Nxl) 
column vector of unknown coefficients parameterizing the 
slowness, and & is the (Mxl) column vector of residual 
traveltime data. The elements of the projection matrix are 
given by the inner product of the basis function yj (x, z) 

with the raypath fi (x, z) both computed for the background 
medium: 

wij = /a fl (X, 2) @ (X, Z) drdz (4) 

When orthogonal pixels of constant slowness (Dines 
and Lytle, 1979; McMechan, 1988), are used for the basis 
functions fl (x, z), the projection matrix is typically very 
large and sparse, each element of it representing the segment 
of the ith ray projected on the jth pixel. These segment 
lengths are expensive to compute. Moreover, for the highly 
nonlinear problems encountered in seismic tomography the 
elements must be recomputed for each raytrace. Due to the 
large matrices, the solution of (3) by inversion of W is 
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equations. However, a new problem arises: the imaging 
and displaying of the sum given by equation (2). Normally, 
with orthogonal pixels. we are defining the model 
description for display purposes as well as the correlation of 
points in the image with the data. Inversion along strings 
does not consider these aspects, a fact which keeps the 
inversion simple but shifts some burden toe the display. 
Decisions about filtering and display of the reconstruction 
are made after inversion, thus giving more freedom to 
perform post-inversion processing of 6S(x, 2) for 
interpretation purposes. 

The essential feature of the string inversion is that the 
basis function has nonzero support only along a line. Thus, 
the intersection of a basis function with a raypath is null 
except when they both identically equal the same line, thus 
resulting in a projection matrix which is diagonal. 
Moreover, the string need not have a uniform amplitude as 
formulated above. An interesting example is to define the 
string to have the geometry of the raypath and the amplitude 
distribution of the background slowness model S,(x, z) 
used to find the raypath. In this case, we have 

The coefficients parameterizing the slowness then become & 

= 6si / ti and are dimensionless. Furthermore, the inversion 
simplifies even further because the calculation of ray length 
is no longer required. Also, this dimensionless formulation 
makes it easier to enforce bounds on the magnitude of the 

perturbations &(x, z) by simply bounding ai. 

SYNTHETIC DATA 

As described above, iterative tomography, i.e., 
inversion and imaging, involves two well-defined solution 
steps - raytracing and matrix inversion. Our implementation 
of these steps has some special features: first, we use 
vectorized ray tracing to calculate traveltimes, raylengths, 
and ray trajectories for a fan of rays. This avoids the time- 
consuming operation of linking the ray. For comparison 
purposes, the fan of observed traveltimes are interpolated 
onto the calculated raypaths (McMechan, Harris, and 
Anderson, 1988). Presently, we use 1D interpolation for 
each common-receiver-gather. We plan to improve upon 
this by using 2D interpolation of the pick data organized in 
the shot-receiver domain. String inversion is then 
performed on a super fine grid. After all rays aretraced the 
result given by equation (2) is imaged, that is to say, 
equation (2) is filtered for display and for use as the 
background model for the next raytracing. 

The string method was coded and tested on several 
synthetic examples simulating cross-well surveys. Results 
from one of these, a fault model with 12% velocity contrast, 

impractical, and (3) is often solved by iterative row-action 
methods (Censor, 1983). The choice of orthogonal pixels 
inextricably ties the inversion problem to the problem of 
sampling (and displaying) the estimated slowness field. 14 
high resolution display requires smaller pixels, i.e., more 
model parameters, thus greatly increasing the dimensions of 
W and further increasing the cost of solving equation (3). 

However, we are free to choose the basis functions and 
some choice other than orthogonal pixels of constant 
slowness may provide some advantages. This idea isn’t 
new for splines and other parameterizations are often used to 
describe smoothly varying media. Michelena and Harris 
(1990) suggested using the beampaths as basis functions, 
thus forming a set of natural pixels wherein the matrix 
elements become the area of intersection of the ith beam with 
the jth beam. Conventional rays are used throughout our 
formulation; therefore, a judicious choice of basis functions 
might be to take yj (x, z) =#i (x, ZJ or to use “strings” 
derived from the raypaths as the basis set. 

STRING BASIS FUNCTIONS 

When rays are used to model the traveltimes in 
equation (1) and strings are used for the basis set in equation 
(2), all off-diagonal elements of the projection matrix are 
identically zero and the diagonal elements simply reduce to 
the lengths of the rays. In this case, equation (3) simplifies 
greatly to become 

Each of the coefficients ai represents the average 

slowness along the path, i.e., & = &i / Ii.. The fact that the 
off-diagonal elements of the projection matrix are zero 
implies that the correlation between different traveltime 

perturbations Sti generated by equation (5) is zero. This is 
expected because once the raypaths are found in the medium 
,7,(x, z), the traveltime perturbations are not affected by the 
slowness field in the neighborhood of the ray. If only one 
measurement is available, the result of the inversion ist / 1 (a 
constant slowness along the one string). For many different 
measurements the slowness estimate is just the superposition 
of the strings according to equation (2). A strength of the 
string method is that once a ray is traced, an update to the 
slowness model along that string can be calculated 
immediately. The cost of the inversion is only a small 
increment to the cost of raytracing. 

Inversion along strings avoids two important and time
consuming steps in tomography: 1) the computation of the 
matrix coefficients lV0 and 2) the inversion of the system of 
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are shown in Figure 1. A synthetic dataset corresponding to 
a fault model was created using 100 source points spaced 10 
feet apart. Each source radiated 50 rays in a fan +/- 45 
degrees wide from horizontal. Five raytrace iterations were 
run from a constant velocity starting model. The results are 
shown in Figure 1. The mean absolute traveltime error after 
five iterations was 0.003 ms. The displayed images are 
sampled at 2.5foot vertical and horizontal intervals. 
However, each velocity value is computed for a lo-foot by 
lo-foot cell about the sample point. Some artifacts are 
visible. However, these represent errors of less than 2% 
and are due mostly to the limited view and the asymmetry 
introduced by the raytracing. 

FIELD DATA 

The string tomography method was then tested on a 
real field dataset with over 5000 traveltimes acquired jointly 
by Amoco and Stanford University. The results for different 
inversions using two different starting models are shown in 
Figures 2 and 3. Again, the display is sampled at 2.5 feet 
with IO-foot square overlapping pixels. The mean absolute 
error for the two results after five iterations are 0.606 ms for 
the constant velocity starting model and 0.599 ms for the 
fault starting model. ‘Ihe two tomograms after five iterations 
are very similar and more importantly lead to a common 
interpretation. These data were also inverted using a square 
pixel method that produced a similar tomogram (Harris and 
Tan, et. al, 1990), where an interpretation can be found 
also. 
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Fig. 2. Three of five iterations of the string inversion applied to field data. Distance between wells is approx. 250 feet. 
A depth interval of 1300 feet is displayed. The unimaged zone to the lower right of figures is outside deviated well. 
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Fig. 3. Tllrce of tivc iterations of the string inversion applied to field data. Distance betweenwells is approx. 250 feet 
A depth interval of 13C.W feet is displayed. ‘IlIe unimaged zone to the lower right of figures is outside deviated well. 
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