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In areas with mixed, complex, or simply uncommon lithologies, petrophysicists often use multimineral 

analysis (Mayer and Sibbit, 1980; Mitchell and Nelson, 1988) to estimate volume fractions of individual 

fluid and mineral components of the rock. In this process, the log data is “inverted” at every depth to find 

the volumes of the constituents that form the rock. 

 

A crucial assumption behind multimineral analysis is that the response of any log selected for the analysis 

can be described as a linear combination of the individual log responses to each constituent weighted by 

the fraction of that constituent. Another important assumption is that the response of different logging 

tools when used to measure a “pure” constituent is also a known constant sometimes called an “end 

point”. This means, for instance, that the response of the density tool for pure quartz is always in the close 

vicinity of 2.65 g/cc. However, the response of other tools to other constituents may not always be 

known. 

 

If the multimineral analysis is performed understanding the assumptions of the process and correctly 

choosing the right constituents and their properties, the result is a very good approximation to the 

measured well logs with good estimates of the volume fractions of the different constituents.  When the 

assumptions behind the method are violated, however, fractions estimated from the analysis may be 

incorrect and further analyses (such as rock physics modeling, for instance) may also yield erroneous 

results. 

 

In this paper, we review the method of multimineral analysis, its advantages and limitations, and propose 

solutions for some of these limitations that are implemented in the iMineralysis™ software. In particular, 

we discuss a solution to the problem of estimating the most appropriate “constant” that describes the 

response of a given logging tool to a particular constituent.  We also explain ways to improve the 

multimineral analysis by incorporating other types of data and information not commonly used in 

conventional petrophysical analyses. 
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MULTIMINERAL ANALYSIS: WHAT IS IT? 

 

Multimineral analysis is a method to estimate mineral and fluid volume fractions present in the reservoir 

from well log measurements.  The log response at every depth is assumed to be a linear combination of 

the individual responses of the different logging tools to each constituent weighted by its relative volume 

fraction. 

 

Although the relation between log measurement, volume fractions and constituents’ constants (tool 

responses for pure constituents) can be described in compact form by using indexes for the different 

variables, we will write out “long hand” an example of the equations that describe the relation between a 

typical carbonate system (limestone, dolomite, clay, gas and water) with a common suite of well logs 

(gamma ray, neutron, density, volumetric photoelectric factor U and conductivity Cx): 

 

GRlog   = Vdol GRdol   + VlimGRlim  + VshGRcl    + VgasGRgas   + VwatGRwat ,  (1a) 

NPHIlog = Vdol NPHIdol   + VlimNPHIlim   + VshNPHIcl   + VgasNPHIgas   + VwatNPHIwat ,  (1b) 

RHOlog   = Vdol RHOdol   + VlimRHOlim   + VshRHOcl   + VgasRHOgas   + VwatRHOwat ,  (1c) 

Ulog   = Vdol Udol    + VlimUlim     + VshUcl    + VgasUgas    + VwatUwat ,   (1d) 

Cxlog   = Vdol Cxdol  + VlimCxlim    + VshCxcl    + VgasCxgas   + VwatCxwat ,   (1e) 

 

where, for instance, Vdol is the volume fraction of dolomite, GRdol is the GR response for dolomite (GR 

dolomite “constant”),  and GRlog is the GR value measured by the logging tool at the well.  The notation 

for other variables is analogous.  In this example, we assume Archie’s equation to estimate conductivity 

Cx from resistivity Rt: 𝐶𝑥 = 1/√𝑅𝑡 . For simplicity, we will refer to the log value that corresponds to 

each pure constituent (either solid or fluid) as the “mineral constant” in the rest of the paper. Each of the 

linear equations shown above is called the “tool response” for that particular log. If the selected 

constituents describe all fluids and minerals present in the rock, they should also satisfy the following 

equation, also called the unity constraint: 

 

1    = Vdol  + Vlim +  Vcl + Vgas + Vwat .    (1f) 

 

If the mineral constants are known, the linear system of equations (1) can be solved for the volume 

fractions at each depth where log measurements are available. 
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Because the linear system (1) needs to be determined or overdetermined, the number of volume fractions 

that can be estimated at each depth is limited by the number of well logs available. The more logs we 

have, the more minerals we can solve for. In the example described by the system of equations (1) (5 

measurements from different logs plus the unity constraint), we can solve for the 5 volume fractions of 

different minerals we are interested in. Since we have 6 equations and five unknowns, we could still 

attempt to estimate one more mineral fraction if we suspect that the system has other lithologies and if we 

assume that mineral constants are perfectly known. If the system is overdetermined, we can solve it by 

using least squares and include other constraints that relate to the error in individual log measurements. 

 

A typical workflow to estimate volume fractions in a selected depth interval along a well is: 

1. Select minerals and fluids to solve for.  Minerals can be selected from core data analyses, 

previous petrophysical analyses or any form of prior knowledge or experience from the interval 

of interest.  

2. Use tabulated values (from the literature or software vendor) or previous knowledge from the area 

to fix the mineral constants.  

3. Solve the linear system of equations (1) for volume fractions (one depth a time). 

4. Calculate modeled logs for the interval of interest using volume fractions estimated in 3. 

5. Visually examine fit between real and modeled logs. 

6. Manually adjust mineral constants related to logs where largest mismatches are observed. 

7. Repeat steps from 3 to 6 until the fit is “acceptable” and the volumes fractions are “reasonable”. 

 

LIMITATIONS OF CONVENTIONAL MULTIMINERAL ANALYSIS 

 

The main assumptions of multimineral analysis (linearity of responses and known mineral constants) are 

also the main limitations of the method. 

 

The first limitation refers to the linearity of the well log response with respect to the volume fractions. If 

the response of a particular log cannot be approximated by a linear equation, log measurements should be 

“converted” first, if possible, into another log that shows the assumed linear behavior before performing 

any analysis.  In some cases, these transformations can be simple, like in the case of the photoelectric 

factor (PE) which should be converted into volumetric photoelectric factor (U) by doing a simple 

transformation that uses the density log.  In the case of the resistivity log, it can be easily transformed into 

pseudo-conductivity by assuming Archie’s equation with m=n and a=1, but with the intrinsic limitations 

of this equation. For the sonic log, however, the linear approximation that relates measurements, fractions 
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and mineral constants is not always valid; this approximation is Wyllie’s time average equation which 

may be valid only for certain rocks (Mavko, et al., 1998).  If sonic logs are used in multimineral analysis, 

we have to make sure that Wyllie’s approximation is valid for the type of rocks considered and if not, less 

weight should be given to the sonic data during the analysis. 

 

In rocks made of a large number of minerals, it is very tempting to use as many logs as possible to solve 

for the largest number of minerals we can. This approach, however, may lead to major errors if all logs 

cannot be expressed as a linear combination of mineral constants and volume fractions.  If several logs 

measure related properties, the system may also become degenerate or ill-conditioned. 

 

The second important limitation of multimineral analysis refers to the assumption that the mineral 

constants are well known. The log response to some pure minerals (or fluids) is well known and indeed 

can be found in numerous tables in the literature and in the manuals of software vendors.  Problems arise, 

however, when different tables report different values or when the range of variability of one particular 

mineral constant is so large that, in practice, this mineral constant becomes another unknown in the 

analysis. An example of this problem for clay minerals is shown in Table 1 for illite and kaolinite. Three 

different sources in the literature report, for instance, four different values for the density of illite.  Which 

is the correct value?  All?  None? Are these values valid in our area of interest? Additionally, we may 

face situations where more than one type of clay is present or we don’t know what type of clay is present 

in the reservoir. 

 

 

Table 1.  Mineral constants (“tool responses”) suggested in the literature and petrophysical software for illite and kaolinite. Not 

all values are available (“na”) in all sources. Notice how different sources may report different values for the same mineral and 

the same tool. 
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In addition to the constants related to the solid portion of the rock, fluid constants (like water resistivity) 

obtained from specific laboratory analyses may not always be available or may vary across the field. 

Errors in fluid constants may result in important variations in volumes of water and hydrocarbons, and 

therefore, porosity. 

 

In other cases, even if we know the mineral constants that describe all the constituents of the rock, the 

number of different well logs available may not be sufficient to solve for all their volume fractions.  In 

this case, an experienced petrophysicist will introduce “pseudo-minerals” by mixing some of the original 

minerals to reduce the number of unknowns. However, the uncertainty in the constants of these new 

“pseudo-minerals” can also be large. 

 

In summary, some constants may require adjustments that are usually performed in a trial-and-error 

fashion during the mutimineral analysis. The petrophysicist has to make sure that the values used are 

“reasonable” because they represent the mineralogy of the formation and yield the “expected” volumetric 

solution for the area. Experience of the petrophysicist and prior knowledge of the area are crucial in this 

process. 

 

Since all constants and volumes are related through a system of equations similar to (1), changes in one 

constant will likely affect the volume fractions of all minerals and therefore, we may also need to adjust 

the constants we thought we knew well. The coupling of all variables makes the trial-and-error process 

time consuming, tedious, and extremely dependent on the experience of the petrophysicist. Besides, there 

is a limit on the number of combinations that even an experienced petrophysicist can test to solve a 

system of equations like (1) by trial-and-error, which becomes nonlinear if the mineral constants are also 

unknown. 

 

In the following section, we describe how iMineralysis™ addresses the problem of unknown mineral 

constants and helps the petrophysicist to obtain faster, accurate, and consistent solutions when performing 

multimineral analysis. 

 

AUTOMATIC ESTIMATION OF MINERAL CONSTANTS: THE ESSENCE OF 

IMINERALYSIS™ 

 

As explained before, multimineral analysis requires the solution of a system of equations similar to (1) for 

each depth. For the particular example of system (1), we have to solve an overdetermined system of 6 
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equations and 5 unknown volume fractions. In the extreme case where no mineral constants are known, 

we would have to solve for an additional 25 unknowns; this is obviously not possible if we use log 

measurements from just a single depth. Besides being highly underdetermined, the system of equations 

(1) with volume fractions and mineral constants as unknowns is also significantly nonlinear because the 

unknowns multiply each other. 

 

Underdetermination is addressed by adding depths into the solution of the problem and assuming that the 

mineral constants do not change within the interval of interest. As long as the system of equations at each 

depth is overdetermined in volume fractions, each additional depth will add more equations than 

unknowns.  In our example of equation (1) and assuming that we want to estimate all 25 mineral 

constants, we would need to use at least 25 depths to have a system of nonlinear equations with the same 

number of equations as unknowns. Adding more depths will transform the system of equations into an 

overdetermined one, but due to the nonlinearity of the problem, this still but may not be enough to 

estimate a unique solution that also makes physical sense. In some problems, we may need to be less 

ambitious in the number of mineral constants we want to estimate and focus only on those with the largest 

uncertainties. 

 

To address the nonlinear aspect of the problem due to the multiplicative nature of the unknowns, we 

separate the selection of mineral constants from estimation of volume fractions, using a genetic algorithm 

(GA) (Goldberg, 1989) to generate sets of candidate values for the constants and least squares to estimate 

volume fractions for each candidate at each depth.  Candidates are rated by several measures (how well 

the logs calculated from their estimated volume fractions match the measured logs, along with other 

constraints), and the GA iteratively optimizes candidates over a number of generations by propagating 

good mineral constant values from one generation to the next. 

 

There is no limit on the number or nature of constraints that can be used to rate candidate values.  These 

constraints do not need to be linear since they are applied within the GA iteration but outside the linear 

solver.  Examples of these constraints are: 

• Volumetric: all volume fractions are positive; fluid fractions cannot add up to more than certain 

values based on experience and their sum, porosity, cannot be greater than a predetermined 

maximum value that varies from one area to another; expected volume fractions in some intervals 

must be less than a predetermined value. 
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• Porosity:  calculated porosities should be similar to ones observed in cores or porosity curves 

from NMR.  NMR porosity logs can be also used as an independent curve to increase our ability 

to estimate more minerals. 

• Mud log: volume fractions should be similar to the ones observed in lower resolution descriptions 

of mud logs. 

Our implementation of multimineral analysis in iMineralysis™ also considers other factors in the solution 

of the linear system of equations that are not described in this paper for the sake of simplicity. Prior 

references in multimineral analysis (Mayer and Sibbit, 1980; Mitchell and Nelson, 1988) describe these 

additional factors in detail. 

 

 

SUMMARY 

 

iMineralysis™ is a nonlinear optimization method that can help the petrophysicist to solve the problem of 

estimating volume fractions when some mineral constants are unknown in areas of complex lithologies.  

iMineralysis™’ use of GA for optimization automates both the time-consuming, manual trial-and-error 

process of estimating mineral constants and the application of constraints which cannot be included in a 

linear model such as (1).  This frees the petrophysicist to explore at a higher level, for example by 

considering different logs or components or even the spatial variations in important parameters such as 

water resistivity, kerogen maturity, and clay composition. Even though the method is largely automatic, it 

still requires interpretative inputs based on experience and prior knowledge to be able to solve the 

problem successfully. 
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