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Summary 

 

Multimineral analysis that quantifies the volume fractions of 

minerals and fluids from a set of well logs has been used for 

reservoir characterization in complex geological settings. 

However, due to the data errors and the similarity between 

petrophysical endpoints, the solutions of multimineral 

analysis are non-unique. Furthermore, defining the 

petrophysical endpoints is challenging in complex 

geological settings because standard endpoint values may 

not be optimal. All the uncertainties must be evaluated but 

cannot be achieved by standard linear solvers. Stochastic 

Bayesian inversion methods have been developed to assess 

the uncertainties, but the high computational time and the 

need for detailed prior information hinder their practical use. 

We employ a Markov chain Monte Carlo with ensemble 

samplers (MCMCES) in the Bayesian framework, which is 

more efficient in convergence than the conventional random 

walk methods in high dimensional problems. We apply the 

new method in two different applications. First, we evaluate 

the uncertainty of constituent volume fractions resulting 

from the data errors and the similarity of endpoints on a 

conventional carbonate reservoir. In our second 

implementation of MCMCES, we assess the uncertainty of 

key endpoints that are difficult to estimate and optimize 

multimineral analysis using a synthetic dataset and field data 

from the Bakken Formation. Our proposed method provides 

different realizations in volume fractions or in petrophysical 

endpoints for interpreters to better evaluate multimineral 

results.  

 

Introduction 

 

Multimineral analysis is an analytical tool that relates the 

well logs to the rock composition through a matrix of 

petrophysical endpoints. The rock composition can be 

represented by the volume fractions of minerals and fluids 

(collectively called constituents) which are jointly inverted 

at every depth by minimizing the difference between the 

theoretical tool responses and a set of well logs (Mayer and 

Sibbit, 1980; Quirein et al., 1986). Due to the uncertainties 

in both data errors and petrophysical endpoints, the solutions 

of multimineral analyses are non-unique. Independent data, 

like core measurements, are generally required to calibrate 

the multimineral results, but they may not be available. The 

conventional linear solvers can only optimize the inverse 

problem for limited solutions and do not provide 

uncertainties of volume fractions and the endpoints used in 

the analysis. 

 

Bayesian inversion methods have been used in the past to 

assess uncertainty in log evaluation workflows. For instance, 

Spalburg (2004) applies the random walk Markov chain 

Monte Carlo simulation to evaluate the uncertainty, but the 

proposed implementation only focuses on net-to-gross ratio, 

porosity, and saturations. Yang and Torres-Verdin (2015) 

and Deng et al. (2019 and 2020) formulate Bayesian 

inference methods for the uncertainty of mineral and fluid 

volume fractions. However, their methods generally require 

normal distributions as prior information to help 

convergence and require large computing times 

(approximately 1 minute per sample). The slow convergence 

and the large computational time of the method in high 

dimensions prevent its use in practical applications. 

 

In this abstract, we show two implementations of the Markov 

chain Monte Carlo with ensemble samplers (MCMCES) to 

the problem of multimineral analysis. First, we estimate 

volume fractions. Given a set of constant petrophysical 

endpoints, we assess the uncertainty of fractions resulting 

from the data errors and the similarity between endpoints of 

constituents. The new implementation estimates the 

posterior distribution of each constituent volume fraction 

more efficiently than the previously published methods and 

does not require any specific prior distributions except the 

lower and the upper limits of volume fractions. 

 

Besides the uncertainty in volume fractions, another 

common challenge in multimineral analysis is the selection 

of the constituent endpoints. Most commercially available 

applications use default endpoints for the tool responses of 

constituents. However, these predefined values are not 

always optimal, especially for the unconventional reservoirs, 

because the number of constituents is commonly greater than 

the number of well logs. In practice, multimineral analysis is 

an iterative process where petrophysicists tune these 

endpoints within reasonable ranges by manual trial-and-

error to minimize the difference between the theoretical 

predictions and the well logs as well as core measurements. 

To automate this time-consuming process of adjusting the 

endpoints, Michelena et al. (2020) use a genetic algorithm to 

solve simultaneously for fractions and endpoints. However, 

a statistical method to assess the uncertainty of the 

petrophysical endpoints is still needed. 

 

Our second MCMCES application aims to estimate the 

uncertainty of key endpoints by simply setting ranges as 

prior information, instead of constant values, in the 

endpoint’s matrix. MCMCES explores the model space of 

endpoints and provides the posterior distributions needed to 

optimize the multimineral results. We demonstrate the new 

implementation with a synthetic model and a field dataset 

from the Bakken Formation. 
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Bayesian inversion in multimineral analysis 

Review of Multimineral Analysis 

 

For simplicity, we use a linear mixing model to predict the 

log response (d) for each depth as follows 

 

𝑑 = 𝐺𝑚, (1) 

 

where G is the matrix that contains the endpoints of 

constituents for each tool (e.g., bulk density, neutron 

porosity, etc.) and m is the vector of constituent volume 

fractions. Among the simulated logs (d), resistivity is 

modeled through the Archie’s equation and converted to 

conductivity (assuming both cementation and saturation 

exponents equal to two).  

 

Multimineral analysis implements a joint inversion to 

minimize the difference between the theoretical tool 

responses and the well log data. The L-2 norm of equation 

(1) is given by 

 

min
𝑚

‖𝐺𝑚 − 𝐷‖2
2, (2) 

 

where D is a vector of well log data. Additional constraints 

are that the volume fraction of each constituent should be 

between 0 and 1 and that the sum of all fractions should be 

equal to 1 (the unity constraint). Due to the errors in the data 

(D) and the endpoint matrix (G), the solutions of 

multimineral analysis are non-unique. Moreover, 

constituents with similar endpoint values may result in a 

high condition number of the matrix G, and solutions 

become unstable. All the uncertainties must be assessed with 

different realizations.  

 

Markov Chain Monte Carlo with Ensemble Samplers 

 

Monte Carlo simulations in the Bayesian framework provide 

a means by which uncertainties in the data can be translated 

into uncertainties in the simulated results. For a given dataset 

(D), the posterior probability distribution p(θ|D) of the 

model parameter θ can be sampled from 

 

  𝑝(𝜃|𝐷) ∝ 𝑝(𝐷|𝜃)𝑝(𝜃), (3) 

 

where p(D|θ) is the likelihood function, and p(θ) is the prior 

distribution of the model parameter.  

 

The implementation of Bayesian inference methods may be 

straightforward, but the difficulty lies in the parameter 

tuning as well as the slow convergence for the high 

dimensional problems. To optimize this problem for 

multimineral analysis, we employ the Markov chain Monte 

Carlo with ensemble samplers (MCMCES), which uses a 

simultaneously evolving ensemble of walkers where the 

proposal distribution for one walker is based on the current 

positions of the ensemble walkers. More details about 

MCMCES can be found in Goodman and Weare (2010). 

 

Depending on the goal of the Bayesian inference application, 

the model parameter (θ) in equation 3 can be the volume 

fractions (m), which is a linear simulation (for a given G), or 

the endpoint matrix (G), which is a non-linear simulation. In 

the following sections, we set up different examples for each 

application. 

 

Estimation of Uncertainty in Volume Fractions (m) 

 

Our first application of MCMCES is to assess the 

uncertainty of volume fractions. In this case, the likelihood 

function p(D|m) can be described by 

 

     𝑝(𝐷|𝑚) ∝ exp[−
1

2
(𝐺𝑚 − 𝐷)𝑇𝑊−1(𝐺𝑚 − 𝐷)],  (4) 

 

where W is a diagonal matrix containing terms related to the 

noise of well logs (Deng et al., 2019). The primary 

uncertainty in this case comes from the data errors. After 

determining the acceptable data misfits, MCMCES aims to 

produce the posterior results within the targeted data misfit. 

The secondary uncertainty results from the similarity in 

constituent endpoints. As shown in equation 2, the inverse 

problem is simulated through the endpoint matrix (G) in 

which the values of individual endpoints play a significant 

role. Even when the inverse problem is well determined (the 

number of logs plus the unity constraint is equal or greater 

than the number of unknown volume fractions), the 

uncertainty of each constituent volume fraction is different. 

The ambiguity exists when the endpoints of constituents are 

similar, such as anhydrite, dolomite, and calcite. 

Furthermore, such an ambiguity changes with the weighting 

function of input logs defined by the interpreters. 

 

Figure 1 shows posterior volume fraction models from a 

carbonate reservoir using MCMCES. The input well logs are 

gamma ray, resistivity, bulk density, neutron porosity, 

acoustic slowness, and volumetric cross-section. The rock 

composition consists of anhydrite, dolomite, calcite, quartz, 

water, and oil. The posterior distributions are displayed as 

color schemes at every depth whereas the deterministic 

solutions are shown in the black dashed lines as reference. 

 

In this application, we use 1,000 walkers in volume fraction 

with a random prior distribution between [0, 1] for minerals 

and [0, 0.5] for fluids. Each walker takes 140 steps. Figure 2 

shows the detailed trace plots where all the steps of the 

walkers are recorded for one depth sample at 11,624 ft. The 

realizations are only acceptable when their weighted data 

misfits are acceptable (> -15), which defines the burn-in 

section and the posterior distribution of each constituent 

volume fraction. The posterior distributions are all plausible 

realizations that fit the data within the acceptable misfit. 

10.1190/segam2021-3582154.1
Page    2384

© 2021 Society of Exploration Geophysicists
First International Meeting for Applied Geoscience & Energy

D
ow

nl
oa

de
d 

09
/1

0/
21

 to
 1

74
.5

1.
11

4.
20

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/s

eg
am

20
21

-3
58

21
54

.1



Bayesian inversion in multimineral analysis 

After 90 steps, most walkers converge and the data misfits 

(top panel of Figure 2) stabilize within the target range. Both 

Figures 1 and 2 demonstrate the greater uncertainties (lower 

resolutions) for the volume fractions of anhydrite, calcite, 

and dolomite than those of clay, water, and oil, mainly due 

to the similarity in petrophysical endpoints of those 

minerals. Note that the new method does not use any 

Gaussian prior distributions, which is best for applications 

where only upper and lower limits of the volume fractions 

are known. Regarding computing time, a single MCMCES 

simulation at one depth sample (shown in Figure 2) takes 3.5 

seconds on a desktop PC (i7 CPU at 3.47 GHz with 24-GB 

memory) using a MATLAB 2018b platform. 

 

 

Figure 1. The posterior distributions for constituent volume 

fractions. Anhydrite, dolomite, and calcite have greater uncertainties 
than those of clay, water, and oil, due to the similar endpoint values. 

The solutions from a conventional linear solver are shown as black 

dashed lines for reference.  
 

Estimation of Uncertainty in Endpoints (G) 

 

Our second application of MCMCES aims to explore the 

model space of endpoints that are typically optimized by the 

interpreter’s manual, trial-and-error process. The standard 

values of endpoints are commonly not optimal in a complex 

geological setting, which increases the uncertainty of 

multimineral results. The reasons why the endpoints may 

depart from the standard values are (Michelena et al., 2020): 

1) more unknown minerals than logs available which forces 

the use of mixed “pseudo-minerals”; 2) lack of pure minerals 

that exhibit standard values interval of interest; 3) spatial 

variation of endpoints; 4) errors in tool calibration. 

Therefore, tuning the petrophysical endpoints is necessary 

but may also be a painstaking process before reasonable 

multimineral results can be obtained. 

 

Assuming that the endpoints do not change in the interval of 

interest, we explore the model space of selected endpoints 

using MCMCES and the likelihood function p(D|G) is now 

given by 

 

      𝑝(𝐷|𝐺) ∝ exp[−
1

2
∑(𝐺𝑚 − 𝐷)𝑇𝑊−1(𝐺𝑚 − 𝐷)], (5) 

 

where the summation is over depth. The key differences 

between equation 4 and 5 are: (1) the endpoint matrix (G) is 

not constant as selected endpoints perturb within reasonable 

ranges; (2) the volume fractions (m) are solved by a gradient-

based optimizer at every depth and the misfits are then 

summed along depth to compute the errors. The results of 

equation 5 are the posterior distributions of selected 

endpoints. 

 

We first benchmark our second application using a synthetic 

case. The synthetic model consists of anhydrite, dolomite, 

calcite, clay, water, and oil in a 100 ft interval. The simulated 

well logs (equation 1) are gamma ray, bulk density, neutron 

porosity, conductivity, acoustic slowness, and volumetric 

cross-section with additional 2% Gaussian noise. In the 

endpoint matrix, instead of constant values, we set up 

reasonable ranges with random distributions as prior 

information with 50 walkers for gamma ray (GR) and 

volumetric cross-section (U) endpoints of the solid 

constituents (anhydrite, dolomite, calcite, and clay) for a 

total 8 parameters. Figures 3a and 3b show the prior and 

posterior distributions of selected endpoints, respectively. 

The posterior distributions in Figure 3b correctly 

approximate the most probable endpoint values with 

uncertainties as compared with the true model parameters 

shown in black dashed lines. 

 
Figure 2. Trace plots at 11,624 ft after combining all 140 steps from 
1,000 walkers. The top panel (black points) illustrates the change in 

data misfits along steps. Blue points are the perturbations of volume 

fractions of individual constituent along steps. The red dashed line 
defines the burn-in sections and the steps with the acceptable misfits 

for the posterior distributions. 
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Bayesian inversion in multimineral analysis 

 

We then apply the new method to a field dataset from the 

Bakken Shale Formation, where gamma ray endpoints of 

solid constituents generally are hard to estimate, especially 

for kerogen. The gamma ray log in this example exhibits 

extremely high readings (~ 1,000 API) at the Upper and the 

Lower Bakken intervals due to the high uranium content of 

kerogen in place. Typically, the optimal value of gamma ray 

for kerogen can only be tested in a trial-and-error fashion by 

manually checking the data misfits or core measurements. 

We implement the MCMCES for gamma ray endpoints of 

solid constituents (quartz, dolomite, calcite, illite, and 

kerogen) to estimate the optimal values as well as their 

uncertainties. Figures 4a and 4b show the prior and the 

posterior distributions of gamma ray endpoints after the 

simulation of 50 walkers with 200 steps. The gamma ray 

posterior distribution for kerogen displays a mean value of 

3,979 API with a standard deviation of 106 API. The 

application can potentially be extended to all other endpoints 

of the matrix (G). 

 

Conclusions 

 

To address the uncertainties in multimineral analysis, we 

have implemented the Markov chain Monte Carlo with 

ensemble samplers for posterior distributions in either the 

volume fractions or the petrophysical endpoints with only 

using lower and upper limits as prior information. By setting 

an acceptable data misfit, the new methods search the model 

space efficiently and provide plausible realizations to help 

the petrophysicist make proper interpretation decisions.  

 

 

 
Figure 4. Gamma ray endpoints estimation for Bakken Shale 

Formation. (a) Top panels: random prior distributions for gamma 
ray of quartz, dolomite, calcite, and kerogen. (b) Bottom panels: 

posterior distributions. 
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Figure 3. A synthetic model of MCMCES for selected endpoints in the matrix (G). (a) Top panels: random prior distributions of gamma ray 

(GR) and volumetric cross-section (U) of solid constituents (anhydrite, dolomite, calcite, and clay). (b) Bottom panels: posterior distributions 

of the corresponding endpoints. Black dashed lines indicate the true answer values. 
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