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Summary 
 
We propose a simple method to estimate facies 
probabilities based on statistical analysis of 
multidimensional crossplots of seismic attributes. After 
careful petrophysics and rock physics diagnostics, log scale 
facies flags related to thick sand bodies are created. These 
flags are then used to color crossplots of seismic scale 
attributes derived from AVO inversion of PP data (Vp, Vs, 
and density) and inversion of post stack fast and slow PS 
components of a 3C-3D survey. We show that by jointly 
using these five seismic attributes and facies flags (like a 
colored five dimensional crossplot), we can estimate the 
probability of thick sand bodies much better than when we 
crossplot two attributes at a time. Unlike commonly used 
approaches to map facies or lithologies from seismic data 
based on selecting regions in seismic attribute crossplots, 
our approach accounts properly for overlap among different 
facies and quantifies the probability of their occurrence. 
 
Introduction 
 
Crossplots are commonly used in the geosciences to gain 
qualitative insight about relations between different 
variables, typically three (for two dimensional colored 
crossplots). In rare occasions, the relations among four 
variables are explored by using three dimensional colored 
crossplots. The variable used to color the crossplot is 
usually related to the property of interest, sand or pay for 
instance. In these cases, crossplots can be used in a 
quantitative sense by selecting (drawing) a region in the 
crossplot where most of the property of interest “lives”. 
This approach is the extension to 2D of cutoff based 
approaches commonly applied to separate scenarios in 1D 
time series. One drawback of this approach is that it works 
best only when there is no overlap between the region 
occupied by the property of interest and the region 
occupied by the background. Another drawback is that it is 
difficult to extend to three dimensional crossplots and 
impossible to apply for dimensions higher than three.  
 
In this paper, we propose a simple method to overcome 
these difficulties for extracting quantitative information 
from crossplots and estimate facies probabilities based on 
joint statistical analysis of multiple seismic attributes and 
log scale facies flags. Other methods to estimate facies 
probabilities have been proposed before. Gallop (2006) and 
Ng et al. (2008) describe different continuous approaches 
using well data to estimate conditional probability density 
functions and then apply Bayes’ formula to refine prior 
facies probability volumes. Both approaches are more 
computationally intensive than ours and require various 

normality assumptions (in particular, Gaussian distribution 
of data noise). Stright et al. (2009) gives a thorough 
discussion of support issues and uses a crossplotting 
approach similar to the one presented here but with a 
different way of handling scaling.  
 
Since crossplots of seismic derived attributes are the heart 
of our method to estimate probabilities, we will start by 
revisiting the use of crossplots for facies/lithology 
qualitative classification. Then, we summarize the method 
to extract facies probabilities from multidimensional 
crossplots of seismic attributes colored by facies flags. 
Finally, we apply this method to help the characterization 
of a typical tight gas reservoir, the Mesaverde Group at 
Mamm Creek field, located in the Piceance Basin, State of 
Colorado, in the United States.  
 
Crossplotting revisited 
 
Typical colored crossplots range from perfect-separation to 
complete–overlap of the target scenario with respect to the 
background.  Intermediate cases include  scenarios that 
range from clustered-response with some-overlap to 
clustered-response with complete-overlap.  Figure 1 shows 
an example of the later scenario which occurs very often in 
practical situations. For this reason, we will examine it in 
more detail. Let’s assume that the target (red dots) in 
Figure 1 corresponds to gas saturated sandstones embedded 
in a wet background (blue dots). Even in this case where 
there is a complete overlap of red and blue dots, the 
likelihood of finding red dots is larger for the attribute 
values where the target cluster “lives” (right side of the 
crossplot). 
 
The method we use in this paper tries to account for 
clustering of the response of the desired property in 
multidimensional crossplots of seismic attributes, going 
beyond drawing polygons or using cut-offs to separate 
regions of interest. It quantifies the statistical differences in 
the responses of the different scenarios. Next section shows 
how to do this in detail starting from basic probability 
definitions. 
 
Probabilities from crossplots 
 
We use conditional probabilities and the correspondence of 
the different log scale scenarios with seismic scale 
attributes sampled at well locations to estimate the 
likelihood of the target scenario away from wells. Similar 
results can be obtained using Bayes’ formula to estimate 
the probability if a prior estimate of probability is known. 
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Figure 1. Probability estimations from crossplots. A rectangular 
grid is superimposed on the crossplot and individual probabilities 
of the different scenarios (red and blue dots) are calculated for 
each rectangle. These probabilities are then assigned throughout 
the whole seismic volume.  
 
A conditional probability estimates the likelihood of an 
event of interest given that a conditioning event is known to 
occur: 
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Here, P(S) is the probability of observing the target 
scenario S (e.g. facies flag related to thick sand bodies), and 
A is a conditioning event providing extra information (in 
our case, inverted seismic attributes). 
 
Conditional probabilities are well suited to this application 
because they do not require that any particular form of 
relationship, or even any relationship at all, exists between 
scenarios (facies) and conditioning events (seismic 
attributes).  Additionally, no assumptions are made about 
probability distributions or independence. 
 
We define conditioning events by superimposing an M×N 
grid on the 2D attribute crossplot; each rectangle in the grid 
defines a conditioning event NjMiAij ≤≤≤≤ 1,1,  (see 
Figure 1). These events should tend to capture any relation 
between facies and seismic attributes. Moreover, the 
conditional probabilities using these conditioning events 
can be estimated simply by counting the number of samples 
in the rectangle that belong to the target scenario and 
dividing by the total number of samples in that rectangle: 
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Here NL is the count over samples. This approach easily 
generalizes to cases where more than two attributes are 
believed to be related to the target scenario. Examples 
using two, three, and five attributes at a time are shown in 
this paper.  

 
Selection of M and N for defining conditioning events 
involves a tradeoff and should be done on a case-by-case 
basis: Large M and N (small rectangles) will tend to group 
very closely related samples and give stronger separation, 
but too-small NL values could mean sensitivity to noise and 
other errors. On the other hand, small M and N (large 
rectangles) will group more loosely related samples and 
give weaker separation, but larger NL values mean more 
stable estimates. 
 
Next section shows an example of the application of this 
method. 
 
Field data example: Mamm Creek field 
 
Mamm Creek field is located in the Piceance Basin, 
northwestern Colorado, in the United States. Most of the 
gas production in Mamm Creek comes from fluvial tight 
sands (~5000 ft deep) in the Williams Fork formation, but 
marine sands in the Corcoran, Cozzette and Rollins 
members (~7000 ft deep) of the Iles Formation and the 
middle and upper sands of the Williams Fork Formation 
also contribute (Scheevel and Cumella, 2009). Mapping the 
distribution of sands is critical for early effective 
development of the field but, unfortunately, seismic data 
have not been used extensively for this purpose because 
elastic properties of sands and shales show large overlap in 
rock physics diagnostics. The method presented in this 
paper was applied to both fluvial and marine intervals but 
results presented here focus on the marine section only. 
 
The data set used for this study consisted of log data from 
102 wells, 3D pre-stack compressional seismic data and 
two PS (fast and slow) stacked volumes from a 3D 
converted-wave multicomponent data set. The size of the 
study area was 2.5 square miles. Gamma Ray, Neutron and 
density logs are available in most wells.  Sonic data was 
available at three wells only; one well had a dipole sonic 
and another well had an oriented cross-dipole sonic.  
 
A summary of our workflow follows: 
1) Petrophysical analysis and generation of facies flags 

based on lithology and thickness. Only sand intervals 
with more than 6% effective porosity and thickness 
greater than 10-15 feet were kept for seismic 
calibration. This approach acknowledges the difficulty 
of seismic data to detect thin sand bodies of less than 
10 ft. and therefore, no attempt is made to map them. 

2) Log scale analysis of relations between petrophysical 
properties of target facies and seismic attributes 
derived from AVO inversion and inversion of PS 
stacked data. Vp, Vs, density, and shear impedances 
derived from PS data were the key attributes in this 
analysis.  
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3) Three-term AVO inversion of PP pre-stack gathers 
and post stack inversion of 3D PS stacked data. The 
results of this step are volumes of Vp, Vs, density, 
pseudo S-impedance fast (pSIf) and pseudo S-
impedance slow (pSIs). Pseudo S-impedances from PS 
data were estimated using the algorithm described in 
Guliyev and Michelena (2009). 

4) Velocity model building and time to depth conversion 
of seismic derived information honoring depths of five 
formation tops picked along 102 wells.  

5) Crossplots of seismic derived attributes colored by log 
scale facies within intervals of similar geologic 
characteristics. Figure 2 shows examples of these 
crossplots for the marine section of Mamm Creek 
field. Inverted seismic attributes along 30 well 
trajectories were extracted from 3D attribute volumes 
in depth. Red sand flags in Figure 2 fall in the same 
crossplots areas predicted by log scale analysis. 
Different criteria were used to create thickness related 
sandy facies flags. We selected the one that produced 
more clustered seismic response in 2D crossplots. 
 

 
Figure 2.  Crossplots of seismic scale inverted attributes at 30 well 
locations and colorcoded by facies flags at log scale. The overall 
position in the crossplot of thick sands (red) with respect to the 
background (cyan) is as expected from rock physics diagnostics at 
well scale. Departures from the 45 degree line in crossplot (d) of 
impedances from PS fast vs PS slow data indicate anisotropy. As 
expected in this field, thick sand facies tend to be more anisotropic. 
 
6) Estimation of probabilities of thick sand bodies using 

different combinations of inverted seismic attributes. 
Among the attribute combinations (crossplots) tested, 
the most relevant were Vp-Vs, Vp-RHO, Vs-RHO, 
Vp-Vs-RHO, and Vp-Vs-RHO-pSIf-pSIs. Figure 3 
shows the results of probabilities estimated from 
different attribute combinations at a selected well 
location. The poorest predictions are obtained by using 

Vp-Vs alone (Figure 3d). Predictions are considerably 
improved by including density in the analyses (Figures 
3e and 3f). The best predictions when using P-wave 
data attributes only are obtained by combining Vp, Vs, 
and RHO (Figure 3g). Finally, when P-wave and 
multicomponent derived attributes are used 
simultaneously (Figure 3h), we obtain the best 
predictions: estimated probabilities resemble very 
closely average facies flags from well data (Figure 
3c). As shown in Figure 2d, PS attributes are sensitive 
to sand anisotropy and for this reason including these 
attributes in the analysis helps to improve the 
detection of thick sand facies. 
 

Notice that even though none of the crossplots in Figure 2 
shows separation between thick sands and background 
facies, the joint probabilistic analysis of all attribute 
responses still yields good estimates of probabilities of 
thick sand facies. 
 

Middle 
Sandstone 

50 ft 

Figure 3. Log data vs. probability estimates from seismic data 
using different combinations of attributes at well 21B-28. (a) 
Gamma Ray; (b) Sand flag; (c) Moving average of sand flag; (d) to 
(h) Probabilities from seismic attributes. (d) Vp-Vs; (e) Vp-RHO; 
(f) Vs-RHO; (g) Vp-Vs-RHO; (h) Vp-V,-RHO-pSIf-pSIs. 
 
Results shown in Figures 2 and 3 were obtained after 
training (or coloring the crossplots) the seismic data with 
log scale flags at 30 well locations that sample the study 
area evenly. Probabilities were also computed by training 
the seismic data extracted along all 102 wells with facies 
flags generated at the same wells. The purpose of this test 
was to understand how much predictions could be 
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improved by introducing all well data available. Figure 4 
shows a cross section of the 5-seismic-attributes derived 
probabilities along the 102 wells. A cross section of facies 
flags used to color the five dimensional crossplot is shown 
in Figure 5 over posted on the seismic derived probabilities. 
Notice how facies distribution expected from log data 
agrees well with estimated probabilities.   
 
Conclusions 
 
Facies probabilities can be easily estimated from 
multidimensional crossplots of seismic attributes using 
basic probability definitions. The method yields useful 
results even when there is complete overlap of seismic 
attributes of target and background facies.  
 
Application of this method at Mamm Creek field shows 
that even when no single attribute or pairs of attributes 
yields good separation of sandy and background facies, 
probability estimates obtained by combining more than two 

attributes compare favorably with facies information at 
well locations. When using PP data only, good results are 
obtained by using simultaneously Vp, Vs and density 
derived from 3-term AVO inversion. However, the best 
results are obtained when using jointly these three attributes 
from PP data with pseudo S-impedances fast and slow 
derived from inversion of PS data. Sensitivity of PS 
amplitudes to azimuthal anisotropy helps to improve sand 
identification where sands are more anisotropic than the 
background. 
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Middle 
Sandstone 150 ft 

Rollins 

Figure 4. Thick sand probability from seismic data extracted along a cross section of 102 wells from a 3D probability cube for the marine 
interval of Mamm Creek field. These probabilities were estimated by using five inverted seismic attributes and thick sand flags shown in Figure 5. 
(Red: high probability; green: lower probability). 

 
 
 

Middle 
Sandstone 150 ft 

 
 
 Rollins 
 
 
 
 
 
Figure 5. Log scale thick sand facies flags along a cross section of 102 wells overposted on seismic probabilities shown in Figure 4. 
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