
U n c o n v e n t i o n a l  r e s o u r c e s  t e c h n o l o g y

1502      The Leading Edge      December 2013

SPECIAL SECTION:  Unconventional resources technology

Estimation of dispersion in orientations of natural fractures from 

This article describes a statistical methodology to esti-
mate dominant fracture orientation and dispersion 

from seismically calculated 3D structural attributes. The 
orientation-dispersion parameter is a modified version 
of the circular variance that is independent of direction 
and can be used to compute the Fisher coefficient, a 
key parameter in the probability density function 
used in discrete-fracture-network (DFN) modeling to 
stochastically generate fracture orientations. We show 
examples of applications to seismic-constrained DFN 
modeling and perform flow simulations on fractured 
models built using different dispersion-parameter models 
to discuss possible implications for drainage of naturally 
fractured unconventional reservoirs.

Introduction
The design of horizontal wells and hydraulic-fracture stimu-
lation requires a detailed understanding of the variations in 
relative orientations of natural fractures and the local stress 
field across the reservoir. Existing natural fractures strong-
ly influence the effectiveness of any stimulation program. 
Structural attributes extracted from poststack 3D seismic 
data such as curvature, semblance, or dip have been used in 
the estimation of preferential orientation in the subsurface, 
particularly orientation of natural fractures. Attributes de-
rived from the analysis of prestack amplitude variations ver-
sus offset and azimuth (AVOZ) have also been used for this 
purpose. After careful calibration with log-derived fracture 
orientations, orientations derived from seismic data may be 
used as a proxy for orientations of natural fractures. How-
ever, these orientations can be misleading or difficult to in-
terpret when multiple fracture orientations are present.

The model-based nature of AVOZ analyses (which as-
sume either a single set of vertical fractures, two sets of or-
thogonal vertical fractures, or either of the above with a tilted 
axis of symmetry) may yield uncertain results when the as-
sumptions of the fracture model are not met. In many geo-
logic settings, several nonorthogonal fracture sets occur with 
different dips and azimuths that overlap in the same volume 
of rock. Approaches that use poststack data and overcome the 
model-based limitations of using prestack data typically yield 
a single orientation per sample, with no indication of how to 
interpret it when multiple orientations are present.

Chopra et al. (2009), however, go beyond single-orienta-
tion answers. The authors generate what they refer to as “3D 
rose diagram” volumes after analyzing orientations of the azi-
muth of minimum curvature for each horizontal time slice. 
Even though their rose diagrams provide a visual idea of the 
dispersion in fracture orientation, no quantitative estimates 
of this dispersion are generated. Furthermore, rose diagrams 
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based on 2D time slices fall short in capturing the real 3D 
nature of fracture orientation that requires two parameters 
(dip and dip azimuth) instead of only the one used to gener-
ate rose diagrams (dip azimuth).

Natural fracture orientations and intensities derived from 
seismic data can be used to constrain discrete-fracture-net-
work (DFN) modeling as long as careful calibration of the 
seismic attribute with local well data is performed to test 
whether the attribute carries information about actual natural 
fractures (e.g., Will et al., 2005). More information besides 
average orientation is required to construct a stochastically 
generated DFN model.

DFN modeling also requires a parameter called the Fisher 
coefficient that measures the dispersion in fracture orienta-
tions (Mardia, 1972). A high Fisher coefficient is related to 
fractures aligned primarily in one orientation, whereas a low 
value indicates fractures with many orientations. Even though 
the Fisher coefficient is three-dimensional in nature, it is usu-
ally estimated from 1D image-log data which record dip and 
dip azimuth only for fractures that intersect the well, hence 
suffering from sampling bias. The average orientation and de-
gree of dispersion are estimated along the well and assumed 
to be constant in the interwell region in DFN modeling 
applications. Because of this assumption, local orientations 

Figure 1. Local strike orientations (blue lines) overlaid on the maxi-
mum curvature attribute extracted along a stratigraphic horizon. 
Blue strike lines are centered in a 25- × 25-m cell-size surface. 
Only strikes related to the largest gradients are shown. The statistical 
analysis of these apparently “noisy” orientations may reveal important 
information about dispersion in fracture orientation in the reservoir. 
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and can be transformed easily into the Fisher coefficient used 
for DFN modeling.

We elaborate on the meaning of this dispersion and ex-
plain how to estimate it from seismic data. Then we show 
how to use dominant orientation and dispersion volumes 
to constrain DFN modeling. The value of the approach is 
demonstrated with a simple DFN modeling example that 

of modeled fractures will have 
the same dispersion as those 
at the wells, a hypothesis that 
might not necessarily be valid, 
implying that estimates of 3D 
variability in orientation dis-
persion from seismic data are 
needed. 

We propose a methodol-
ogy to estimate dominant 
orientations and orientation 
dispersion from structural 
seismic attributes that can be 
used to constrain DFN mod-
els. First, we start by extract-
ing dip and dip-azimuth in-
formation from the chosen structural attribute and compare 
the results with orientations derived from image-log data. 
Because orientation may vary significantly within small areas, 
we extract a more consistent and less noisy dominant orienta-
tion and capture dispersion in the orientations by estimating 
a quantity that generalizes the concept of circular variance, is 
independent of the direction of the reference axis for angles, 

Figure 2. (a) Horizon slice of maximum curvature with areas of interest (in blue). (b) Original local fault strikes estimated by using the 
gradient of the maximum curvature. (c) Dominant orientations (mode) are extracted from moving blocks of 200 m × 200 m × 20 m and 
assigned to the center of each block. The length of the segments is proportional to the magnitudes of the local gradient. Areas indicated by blue 
squares will be analyzed in detail in Figure 3.

Figure 3. Dip-azimuth rose diagrams for the areas highlighted in Figure 2. Area (i) shows dips toward 
the northwest and southeast, and area (ii) shows dips predominantly southeast. Areas (i) and (ii) show that 
most dip azimuths are clustered around the same angles, whereas area (iii) shows more dispersion. 

D
ow

nl
oa

de
d 

12
/1

1/
13

 to
 6

3.
23

3.
14

3.
19

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



1504      The Leading Edge      December 2013

U n c o n v e n t i o n a l  r e s o u r c e s  t e c h n o l o g y

incorporates fracture intensity, 
dominant orientation, and orien-
tation dispersion from seismic data 
into the modeled fractures. Finally, 
we build simple flow-simulation 
models using parameters typical 
of unconventional reservoirs to il-
lustrate the importance of fracture 
dispersion in the drainage of un-
conventional reservoirs.

Orientations from structural at-
tributes
Once the interpreter selects the 
attribute(s) that best respond to 
faulting and possible natural frac-
tures by doing careful calibration 
with well data, we need to estimate 
orientations from this attribute(s) 
that can be related to local fault 
planes. We use the local 3D gra-
dient of the attribute to achieve 
this goal. The calculation of the 
gradient in three dimensions also 
requires velocity information or 
a structural attribute volume in 
depth domain if meaningful esti-
mates of the real dip are to be ex-
tracted, analyzed, and calibrated 
with well information. The plane 
perpendicular to the 3D gradient 
at each point in the volume can be 
interpreted as a local fault plane. 

Figure 1 shows the intersection 
of local fault planes with a strati-
graphic horizon which results in the 
blue segments parallel to local fault 
strikes. The attribute represented 
in this figure is the maximum cur-
vature. Notice how variable local 
strikes can be within fault anoma-
lies particularly. Even though these 
local orientations might look like 
“noise” in some areas, we will show 
that they contain valuable informa-
tion about the possible dispersion 
in subseismic fracture orientations. 
The following section describes how 
to estimate this dispersion.

Statistics of seismic-derived ori-
entations
As we discussed in the previous 
section, local fault orientations 
estimated from the 3D gradient might look noisy and even 
unreasonable in some areas. Because of a variety of reasons 
that range from data-quality issues and resolution to structural 

Figure 4. Plan views of shale outcrops showing significant variability in facture dispersion for different 
formations. The qualitative fracture interpretations at the right indicate that the Fisher coefficient 
increases from Eagle Ford to Whitby mudstone, although changes within individual formations are also 
possible. 

complexity, local strikes estimated from the gradient are not 
necessarily reliable on a “point-by-point” basis. However, we 
propose that when analyzed collectively in a statistical manner, 
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these “noisy” orientations might reveal important information 
about dispersion in subseismic fracture orientation across the 
reservoir. The calibration of these orientations with log-derived 
orientations should also be done in statistical terms.

Mean or dominant fracture orientation? To understand the 
variability in fracture orientation across the area of interest, 
we can extract different statistical measures from angles with-
in small blocks of cells in the larger 3D volume, and these 
results are assigned back to the center of the block in a mov-
ing-average manner. For instance, we can compute local his-
tograms of angles (rose diagrams), as proposed by Chopra et 
al. (2009), to analyze the variability in dip azimuth. We can 
also extract polar plots to analyze the real 3D nature of the 
fracture orientation that requires dip and dip-azimuth angles.

The simplest measure we can extract from a set of angles in 
a given subvolume is the average. This measure, however, can 
be misleading because circular variables such as angles cannot 
always be averaged as if they were linear variables. Even if we 
do the angle average properly by averaging the unit vectors that 
correspond to each orientation, the result can still be mislead-
ing because we might end up with average orientations that 
have nothing to do with the orientations observed in the field.

For instance, if two dominant fracture orientations at 0° 
and 90°, respectively, are observed in the reservoir, an average 
orientation of 45° is meaningless from the fluid-flow point of 
view. A measure that does not suffer from these limitations 
is the mode of the histogram, or dominant fault orientation. 
We think the mode is a more sensible estimate of an “equiva-
lent” angle in a block where multiple orientations are present. 

Figure 2a shows the maximum curvature extracted along 
a stratigraphic horizon, along with 
small segments indicating local strike 
orientations derived from the gradi-
ent and projected along the horizon 
(Figure 2b). Notice how the domi-
nant angles (Figure 2c) are less noisy 
and more consistent across the area. 
Figure 3 shows rose diagrams for the 
areas highlighted in Figure 2. Ar-
eas (i) and (ii) show similar fracture 
strike orientation, with the differ-
ence that in area (ii), most fractures 
dip toward the southeast, whereas 
in area (i), fractures dip toward both 
northeast and southwest. Fractures 
in area (iii) are oriented in many di-
rections. Most dips in the large area 
(not shown) are between 60° and 
80°. Rose diagrams that correspond 
to areas (i), (ii), and (iii) are shown 
in Figure 3.

Dispersion in fracture orienta-
tion. Like in linear statistics, where 
a single number such as the mean 
or mode is insufficient to describe 
the shape or distribution of a set of 
numbers and higher moments such 

as the variance are also needed, in circular statistics, we can 
also estimate a circular variance V as follows (Fisher, 1995):

V = 1 – R /N,                                 (1)
 

where N is the total number of angles used for the analysis and 
R is the magnitude of the vector sum of all unit vectors related 
to each direction. Unlike the linear variance that can take any 
positive value, the circular variance varies between zero (all unit 
vectors pointing in the same direction) and one (all unit vectors 
pointing in directions that cancel each other).

The probability density function used in DFN modeling 
to stochastically generate subseismic fracture orientations also 
requires a parameter called the Fisher coefficient that measures 
the dispersion in fracture directions (Mardia, 1972). The Fish-
er coefficient (K) is defined as K = 1/V and ranges between one 
and infinity. A high Fisher coefficient is related to fractures or-
ganized primarily around one orientation, whereas a low value 
indicates fractures in many orientations.

Figure 4 shows photos of shale outcrops that correspond 
to areas of high and low Fisher coefficients. Even though the 
scales and perspectives are different and no fracture-density 
comparison can be made based on these photos, they do 
show that fracture dispersion can vary significantly among 
outcrops. To extract qualitative information about fracture 
dispersion, we drew straight lines over all fractures in each 
photo and plotted these segments centered in their middle 
point. The result of this qualitative interpretation shows that 
the Fisher coefficient increases from Eagle Ford to Whitby 
mudstone in the photos shown in Figure 4.

Figure 5. (top) Area with 25 predominantly east-west fractures. (bottom) Unit vectors that 
correspond to the 25 strike orientations. (a) All angles are referred to the north. In this case, the 
average magnitude of the sum of all unit vectors is R/N = 0.9882 (out of a maximum of one if 
all orientations were identical). (b) All angles are referred to the east. The sum of all unit vectors 
is the same as in part (a). (c) All angles are referred to the east, but 180° has been subtracted from 
orientations greater than 180°. Cases (b) and (c) represent identical fracture orientations. R / N 
decreases from 0.9882 in part (a) to 0.6863 in part (c) because in (c), directions along the east-
west axis tend to cancel each other.
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The estimation of a Fisher coefficient suitable for describ-
ing fracture orientations from the circular variance is not 
straightforward because the circular variance is designed to 
measure the spread in directions, not orientations. Because 
fracture planes have orientation but their dip-dependent di-
rection is irrelevant to describe the relationship of their strike 
with respect to some reference axis in the horizontal plane, 
the Fisher coefficient estimated from the circular variance 
might not be totally adequate to describe variability in frac-
ture orientations and might yield artificially low values in 
areas such as (i) (see Figures 2 and 3), where fractures show 
the same orientation but opposite directions that correspond 
to opposite dip directions. Eliminating the direction compo-
nent by referring all angles to the range of 0° to 180° helps 
to alleviate this problem but does not solve it along whatever 
axis is chosen as a reference.

Let us examine this problem by analyzing in detail the 
estimation R/N in the simple example in Figure 5. Figure 5a 
shows all unit vectors in the upper part of the figure plotted 
from the same origin and referring the angles to the north. 
Because all angles fall in the range of 0° to 180°, there is no 
need to subtract 180° from the original angles, and the aver-
age magnitude of the sum of all unit vectors R/N is 0.9882 
(out of a maximum of one if all unit vectors were identical).

Figure 5b shows the same unit vectors but now referring 
the angles to the east. When we choose this origin, we obtain 
some angles greater than 180°, and therefore, we need to re-
fer some angles back to the interval of 0° to 180°. The result 
is shown in Figure 5c. Even though fracture orientations in 
Figure 5b and Figure 5c are the same, the average magnitude 

R/N in Figure 5c is 0.6863, erroneously suggesting a larger 
dispersion than in Figure 5a, which represents identical frac-
ture orientations. The reason for this apparent “error” is that 
orientations near the selected axis of reference for the angles 
might result in an artificially low sum of unit vectors if they 
point in nearly opposite directions.

In only two cases is the dispersion independent of the 
selection of the reference axis: (1) when all orientations are 
identical or (2) when dispersion is the highest and fractures 
are randomly oriented in the block of interest. All other inter-
mediate cases that result in higher dispersion with respect to 
one axis will look lower with respect to another. As explained 
above, when all orientations are identical, we obtain R/N = 1. 
In the opposite extreme, when fractures are oriented randomly 
(as in Figure 6a), it is easy to show that R/N ≈ 0.6366, which is 
the average of the sine function in the interval zero to π. 

Figure 6. (a) Area with 25 random fracture orientations. (b) Random 
unit vectors referred to the interval  zero to 180°. The average R/N of 
all 25 unit vectors in this case is 0.6358. For a continuum of random 
orientations, the average R/N is 2/π (≈ 0.6366).
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The examples of Figure 5 and Figure 6 show extreme cases 
in orientation dispersion from all fractures clustered around 
a single angle to fractures spread uniformly across all angles. 
As we have discussed, if we estimate the dispersion by averag-
ing the magnitude of the sum of unit vectors, the result will 
depend on the selection of the reference axis because frac-
ture orientations near the reference may produce artificially 
low sums. However, these apparently low values that indi-
cate high dispersion can be reestimated by using a reference 
axis that is orthogonal to the first axis. In other words, if we 
compute R/N in two orthogonal reference axes and select the 
highest value from the two results, we ensure that fracture 
dispersion will not be overestimated because of the proximity 
of the orientations to a particular reference axis. 

To summarize, the steps needed to estimate orientation 
dispersion M at a point are:

1) Select the first of the two reference axes needed. 
2) Generate dip-azimuth direction angles with respect to this axis.
3) Refer all direction angles to the orientations in the range 

of 0° to 180°.
4) Select a second reference axis orthogonal to the first one. 

Refer all angles to the new range of 0° to 180°.

Figure 8. Crossplot of R/N estimated by referring all angles to the east 
and to the north. The color represents the maximum of the two axes. 
The minimum of R/N for each axis occurs in the upper vicinity of 0.6 
which, as explained in Figure 6, corresponds to the case of randomly 
oriented fractures. 

Figure 7. (a) Horizon slice of maximum curvature. (b) R/N estimated by referring all angles to the east. (c) R/N estimated by referring all 
angles to the north. (d) Maximum of R/N maps (b) and (c) which can be transformed into the Fisher coefficient for DFN modeling. See Figure 
9d for the Fisher coefficient calculated from R/N inside the dashed white line in part (d). Original local fracture orientations are also shown in 
each horizon slice for reference. 
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5) Compute R/N for each set of orientation angles and ex-
tract the maximum M.

The estimate of dispersion M needs to be normalized between 
zero and one before it can be transformed into the Fisher co-
efficient required for DFN modeling. The minimum of M 
occurs when the orientations in the block of interest are com-
pletely random, which results, as we explained above, in M = 
2/π (a formal theoretical demonstration of this is beyond the 
scope of this article, but we will demonstrate it empirically 
in the field data example that follows). Based on this fact, it 
is easy to show that the Fisher coefficient K can be calculated 
by using the following expression:

                                 (2)

Figure 7 shows the result of the estimation of R/N for 
different reference axes (Figure 7b and Figure 7c) and the 
maximum of the two (Figure 7d). Areas of low R/N indi-
cate high dispersion of fracture orientation, and areas of 
high R/N indicate areas where fracture orientations do not 
change significantly. Figure 8 shows a crossplot of the values 
of R/N estimated by referring the angles to the east and to 

Figure 9. Seismic-constrained DFN modeling within the dashed rectangle shown in Figure 7d. (a) Original maximum curvature (assumed to be 
proportional to fracture intensity) along stratigraphic horizon. (b) Dominant orientation. (c) Fisher coefficient calculated from R/N inside dashed white 
line in Figure 7d. (d) DFN modeled fractures near the horizon of interest. Stochastically modeled fractures capture expected intensity, orientation, and 
local dispersion extracted from the seismic data. Areas inside red boxes have similar intensity and orientation but different Fisher coefficients. 

the north. This crossplot is colored by the maximum of the 
two estimates. Notice how the minimum of R/N for each axis 
is approximately 0.6 which, as explained in Figure 6, corre-
sponds to the case of randomly oriented fractures.

Application to DFN modeling
We built several discrete fracture models (DFM) using the 
methodology explained above, assuming fractures of con-
stant aperture, height, and length. For this example, inten-
sity (fracture area/unit volume, or P32, as commonly referred 
to in DFN modeling) is assumed to be proportional to the 
maximum curvature (Figure 9a). Figure 9b shows the domi-
nant fracture orientations extracted from gradients com-
puted from the maximum curvature (same as in Figure 2c). 
Figure 9c shows the Fisher coefficient derived from Figure 7d 
(inside dashed white line) using equation 2. Figure 9d shows 
the intersection of the stochastically modeled fractures with 
the horizon of interest. Notice how local orientations in this 
DFM are determined by both the dominant orientation and 
the local Fisher coefficient. 

Application to flow simulation
To illustrate the effect of the Fisher coefficient on directional 
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Figure 10. (a) Decline behavior of two models with high (1000, dashed line) and low (1, continuous line) Fisher coefficient. (b) Pressure in model 
with uniform Fisher coefficient of 1000 after 100 days of simulation. Black segments indicate DFN-modeled fractures near the horizon of interest. (c) 
Pressure in model with uniform Fisher coefficient of 1 after 100 days of simulation. DFN-modeled fractures are also shown. Notice how both pressure 
fields are similar despite the large difference in Fisher coefficient. (d) Pressure difference. Black segments indicate dominant orientation from seismic whose 
length is proportional to the local curvature Blue colors represent the case in which the large uniform Fisher coefficient results in lower pressure than the 
small Fisher coefficient. Red represents the reverse situation.  The trends in blue shading show that when open fracturing is intense and highly anisotropic, 
pressure depletion is more localized to the areas of high fracture intensity.

permeability, we also defined two alternative DFMs with a 
large Fisher coefficient (1000) uniformly assigned throughout 
the model area resulting in strong directional permeability 
anisotropy around the dominant orientation and alterna-
tively with a small Fisher coefficient (1) uniformly assigned 
throughout the model area, resulting in more isotropic per-
meability. There is still significant cell-to-cell permeability 
variation in both cases, as defined by variability in fracture 
intensity.

The average effective fracture permeability assumed 
for these DFMs is on the order of 0.5 mD (a typical value 
for Bakken Formation). The DFMs were then upscaled 
for dual-media flow-simulation models (Dershowitz et 
al., 2000; Oda, 1985) assuming a matrix permeability on 
the order of that seen in commercial unconventional res-
ervoirs (1 mD) and were initialized with undersaturated 
oil on the order of 1-cp viscosity. Both models were then 
run with a horizontal well (Figure 10) producing at a 
fixed bottom-hole pressure of 500 psia. Initial pressure is 
6750 psia. Along the horizontal wellbore, five times per-
meability enhancement (representing multistage hydrau-
lic fracturing with 150-ft effective stimulated radius) is 
applied in the model. Figure 10a shows that reasonable 
unconventional well initial production (IP) rates have 

been achieved through this near-wellbore permeability-
enhancement approach.

Figure 10a also shows that the decline behavior for the 
simulations is consistent with that expected for unconven-
tional reservoirs. However, both models show minimal rate 
differences, which demonstrates that decline behavior alone 
cannot distinguish the nature of the pressure depletion in the 
reservoir. Figure 10b and Figure 10c show the pressure for 
each model (high and low Fisher coefficient, respectively) af-
ter 100 days of simulation. The absolute pressures look similar 
except for small differences in zones of large fracture intensity.

Figure 10d compares the pressure difference for the two 
models. Blue colors represent the case in which the large uniform 
Fisher coefficient results in lower pressure than the small Fisher 
coefficient. Red represents the reverse situation. The trends in 
blue shading show that when open fracturing is intense and 
highly directional (large permeability anisotropy), the pressure 
depletion is more localized to the areas of high fracture intensity. 
In the case with a low Fisher coefficient, the pressure wave will 
move more slowly away from the well in these highly fractured 
areas, resulting in more uniform depletion all along the well, as 
shown by the red coloring, even in lower-intensity areas.

The impact of stress on the permeability on individual 
fractures has not been incorporated in this simulation study, 
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and it is expected that favorably oriented fractures are more 
likely to be naturally open or to open under shear during 
hydraulic-fracture operations. Calibration of the seismic 
interpretation to FMI, microseismic, hydraulic-fracturing 
treatment pressures, well tests, offset well interference, 
and production decline, all within the confines of geo-
mechanical constraints, is required to better characterize 
the depletion behavior and to optimize hydraulic-fracture 
treatments and well spacing in naturally fractured uncon-
ventional reservoirs

Discussion and conclusions
We have presented a methodology to estimate dominant 
fracture orientation and orientation dispersion from seis-
mic data and to use this information to constrain DFN 
and flow-simulation models. The estimation of dispersion 
(Fisher coefficient) is based on the maximum circular vari-
ance extracted from two orthogonal axes for the origin of 
angles. By estimating the variance for two axes and extract-
ing the maximum, we circumvent the intrinsic limitation of 
the circular variance that is designed to measure spread in 
directions, not orientations. Three-dimensional dispersion 
estimates from seismic data show lateral variability that is 
not possible to quantify by using 1D well data alone.

We also show flow-simulation examples in models built 
using different dispersion conditions to assess the effect of 
dispersion in permeability anisotropy. These flow-simulation 
models are built with parameters typical of those in an un-
conventional reservoir. The simulations show that fracture 
dispersion is expected to have significant implications on 
fluid-flow behavior because of the impact on natural fracture 
permeability behavior prior to and subsequent to hydraulic-
fracturing treatments.

For the cases illustrated here, high-intensity fractured 
areas (fracture swarms) with large Fisher coefficients will 
result in significant pressure-depletion pathways extending 
away from wells and nonuniform pressure depletion along 
the well path. Although not illustrated here, nonuniform 
flow behavior will be even more severe during injection 
processes (e.g., miscible gas, surfactant, or water).

As mentioned in the introduction, the estimation 
of fracture orientation from AVOZ analysis typically as-
sumes a single set of vertical fractures. In terms of velocity 
anisotropy, this situation can be described by a horizontal 
transversely isotropic model (HTI) which corresponds to 
the case of high Fisher coefficient. A low Fisher coefficient 
corresponds to fractures with many orientations which, 
from the wave-propagation point of view, behave like an 
isotropic model. Velocity anisotropy models for situations 
that require symmetries more complex than HTI (from or-
thorhombic to triclinic) will result in intermediate Fisher 
coefficients, but the actual correspondence among them (if 
any) requires further research.

More research is also needed to understand the effect 
of orientation dispersion in hydraulic fracturing as well as 
other issues such as fracturing scale, calibration with disper-
sion from log data, and number of fracture families.  
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