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ANISOTROPIC TRAVELTIME TOMOGRAPHY 

R. J .  MICHELENA,2  F. MUIR’ and  J .  M. HARRIS2  

ABSTRACT 
MICHELENA, R.J., MUIR, F. and HARRIS, J.M. 1993. Anisotropic traveltime tomography. Geo- 
physical Prospecting 41, 381-412. 

Velocity estimation technique using seismic data is often based on time/distance equa- 
tions which are independent of direction, and even though we now know that many rocks are 
quite anisotropic, useful results have been obtained over the years from these isotropic esti- 
mates. Nevertheless, if velocities are significantly direction-dependent, then the isotropic 
assumption may lead to serious structural interpretation errors. Additionally, information on 
angle-dependence may lead to a better understanding of the lithology of the rocks under 
measurement. VSP and cross-well data may each lack the necessary aperture to estimate 
more than two velocity parameters for each wave type, and if the data straddle a symmetry 
axis, then these may be usefully chosen to be the direct velocities (from time-and-distance 
measurements along the axis) and NMO velocities (from differential time-offset 
measurements). These sets of two parameters define ellipses, and provide intermediate models 
for the variation of velocity with angle which can later be assembled and translated into 
estimates of the elastic moduli of the rocks under scrutiny. 

If the aperture of the measurements is large enough e.g. we have access to both VSP and 
cross-well data, we divide the procedure into two independent steps, first fitting best ellipses 
around one symmetry axis and then fitting another set around the orthogonal axis. These sets 
of four elliptical parameters are then combined into a new, double elliptical approximation. 
This approximation keeps the useful properties of elliptical anisotropy, in particular the 
simple relation between group and phase velocities which simplifies the route from the trav- 
eltimes measurements to the elastic constants of the medium. 

The inversion proposed in this paper is a simple extension of well-known isotropic 
schemes and it is conceptually identical for all wave types. Examples are shown to illustrate 
the application of the technique to cross-well synthetic and field P-wave data. The examples 
demonstrate three important points: (a) When velocity anisotropy is estimated by iterative 
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techniques such as conjugate gradients, early termination of the iterations may produce artifi- 
cial anisotropy. (b) Different components of the velocity are subject to different type of arti- 
facts because of differences in ray coverage. (c) Even though most rocks do not have elliptical 
dispersion relations, our elliptical schemes represent a useful intermediate step in the full 
characterization of the elastic properties. 

INTRODUCTION 
Depending on the degree of anisotropy and fine layering of the medium, tomograms 
obtained from cross-well traveltime data under an isotropic assumption may be 
significantly in error. These errors are analogous to the mispositions in surface 
seismic when, in an anisotropic environment, stacking velocities are used to convert 
times into depths. Eliminating these errors provides the main reason for allowing 
the model to be anisotropic in tomographic traveltime inversion. Another is that we 
are solving more than an imaging problem, since it is well known that anisotropy is 
a useful tool for studying lithology and the degree of stratification in sedimentav 
rocks. Taking velocity anisotropy into account in tomographic traveltime inversion 
adds useful information about reservoir and non-reservoir rocks. 

From surface seismic measurements, whether reflection or refraction, it is pos- 
sible to obtain the horizontal component of the slowness. For estimating anisotropy 
additional subsurface information (layer thicknesses or vertical slownesses) is 
required (Levin 1978). For this reason, in recent Studies where anisotropy has been 
quantified, either a different geometry such as VSP has been used (Byun and Corri- 
gan 1990; White, Martineau-Nicoletis and Monash 1983) or the surface seismic 
information has been combined with well logs (Banik 1984). Based on the observa- 
tion that velocity anisotropy does not affect P-wave moveout considerably, Win- 
terstein (1986) estimated the required layer thicknesses using velocities obtained 
from P-wave velocity analysis. Then, from SH-wave velocity analysis, he was able to 
estimate velocity anisotropy. Dellinger (1989) concluded that because of the ill- 
conditioning of the problem, it is not possible to estimate with high accuracy a 2D 
vector velocity field from VSP-like geometries. 

Fewer attempts have been made to estimate velocity anisotropy from cross-well 
measurements. Stewart (1988) proposed a modification to ART methods to estimate 
velocity anisotropy. By using the weak anisotropy expression for the phase velo- 
cities given by Thomsen (1986) to fit the traveltimes, Stewart appeared to assume 
the equality of group and phase velocities, which is, in general, not true. Winterstein 
and Paulsson (1990) estimated a vertical velocity gradient from VSP and cross-well 
data assuming a transversely isotropic model. More recently, Chapman and Pratt 
(1992) and Pratt and Chapman (1992) estimated velocity anisotropy in a general 2D 
medium assuming weak anisotropy in order to justify isotropic ray tracing. 

The main difference between tomographic velocity estimation from surface mea- 
surements and cross-well or VSP traveltimes is that the former requires a priori 
knowledge of reflector positions whereas the others do not. The only positions 
needed to estimate velocities from direct path cross-well traveltimes are the source 
and receiver locations. By eliminating reflector mapping from the problem, the esti- 
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mation of other effects such as velocity anisotropy may be simpler in the cross-well 
environment. 

Elliptical anisotropy is the simplest model of anisotropy, since it introduces only 
one more degree of freedom, and wave and ray relationships are quite similar to the 
isotropic case. However, elliptical anisotropy may be an appropriate approximation 
in only a few cases, such as when the departure from isotropy is small or when the 
observations are limited to a narrow range of angles about a symmetry plane or 
axis. To solve such a dilemma between the convenient properties of elliptical aniso- 
tropy and its restricted applicability, Muir (1990) proposed an approximation that 
fits a wider range of transversely isotropic media while maintaining the useful 
properties of elliptical anisotropy. Dellinger, Muir and Karrenbach (1993) studied in 
detail the properties of this approximation. 

Muir’s approximation is based on four elliptical parameters: two (S ,  and S ,  NMO) 
for the near horizontal propagation (cross-well) and two (S ,  and S ,  NMO) for the near 
vertical propagation (VSP). Each pair of parameters can be estimated by fitting an 
elliptical relation to the traveltimes measured for each geometry. For this reason, 
Muir’s approximation has been called double elliptical approximation. 

We show how to estimate tomographically the elliptical parameters needed in 
the double elliptical approximation, in particular those corresponding to cross-well 
geometries. The slowness components S ,  and S ,  NMO are estimated simultaneously, 
without using any additional information. The technique presented here generalizes 
the idea of tomographic inversion in isotropic media (McMechan 1983) where the 
model is discretized into orthogonal regions and the Jacobian is related to the inter- 
section of the rays with all those regions. 

There are two important differences between our method and that discussed by 
Chapman and Pratt (1992) and Pratt and Chapman (1992). Whereas they estimate 
five parameters from the pseudo-P data alone, but with fewer symmetry assump- 
tions, we make no attempt to estimate more than two parameters (direct and 
moveout velocities) for each wave type from each of the two data sets, cross-well 
and VSP. Also, we make no assumption on the weakness of the anisotropy whereas 
Chapman and Pratt do. Their assumption leads them to use an isotropic ray-tracing 
scheme, our scheme allows us to use the well-known closed-form relationship 
between ray and wave velocities in elliptical media. 

We study the effects of the limited view of the measurements (from cross-well 
geometries) in the estimation of both slowness components, concluding that our 
technique is stable when used to invert 1D (layered) models if the range of ray 
angles is ‘wide enough’. In 2D models, the estimation of lateral variations in the 
vertical component of the slowness is particularly difficult from cross-well geo- 
metries alone. Consequently, 2D spatial variations in velocity anisotropy cannot be 
estimated at the same scale of variations in velocity. We also show that when iter- 
ative techniques such as conjugate gradients are used to invert for the anisotropic 
parameters, early termination of the iterations may produce artificial anisotropy. 
This problem worsens in 2D. 

We first explain what the double elliptical approximation is and which param- 
eters need to be estimated in order to use it. We then explain how those parameters 
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can be actually estimated in particular for a cross-well geometry. The theory pre- 
sented is illustrated with synthetic examples and applications to field data from a 
cross-well geometry. 

DOUBLE E L L I P T I C A L  A P P R O X I M A T I O N  

We summarize the results contained in Dellinger et al. (1993) and Muir (1991). 

Phase velocity around the axis of symmetry and perpendicular to it 

media is (Auld 1990) 
The phase velocity expression for P- and SV-waves in a transversely isotropic 

2 w(8) = (W,, + w ~ ~ )  cosZ 8 + ( W, , + w ~ ~ )  s i d  8 

[(W,, - W44) cos2 8 - (W,, - W44) sin2 ei2 + + qW13 + W44)2 sin2 8 cos2 8 ’ - 

where W(0) is the phase velocity squared and 8 is the phase angle from the vertical 
K j  is the (ij)th elastic modulus divided by density, with units of velocity squared. 
The plus sign in front of the Square root corresponds to P-waves and the minus to 
SV-waves. After expanding the previous expression around 8 = 0 and neglecting 
terms in sin4 8, we obtain 

2 w(8) = ( w,, + w ~ ~ )  cos2 8 + ( W, , + w ~ ~ )  sin2 8 

>- 2(w13 + w44)2 sin2 0 (w,, - w ~ ~ )  C O S ~  8 - (w,, - w ~ ~ )  sin2 8 + w,, - w44 
(1) 

Choosing the plus sign we get the P-wave phase velocity around the vertical 
axis, given by 

w(e) = wP, z c2 + wP, xNMO s2, (2) 

where c = cos 8, s = sin 8, 

WP.Z = w33, 

and 

(w13 + w44)2 

w3, - w44 
wP, xNMO = w44 + 

(3) 

(4) 

Wp,z is the vertical phase velocity squared and WP,xNMO is the horizontal moveout 
velocity squared. 

Similarly, we can obtain P-wave phase velocity around the horizontal axis by 
interchanging W, , and W,, and c2 and s2 wherever they occur in (2), i.e. 

w(e) = wP, x s 2  + wP, zNMO c2,  (5 )  
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where 

W?,X = w11, 

and 

(w13 + w44)2 

wll - w44 . w?, zNMO = w44 + (7) 

Choosing the minus sign in (1), we get the SV-wave phase velocities around the 
vertical axis, given by 

w(e) = %V, z c 2  + %V, xNMOS2, 

wsv, z = w44 , 

(8) 

(9) 

where 

and 

(w13 + w44)2 
WSV,xNMO = wll - 

w33 - w44 

The expression that describes SV-wave phase velocity around the horizontal axis is 

w(e) = &V, x sz + &V, zNMO c2, (11) 
where 

wsv, x = w44 , 
and 

w 1 3  + W44Y 
wSV. zNMO = w33 - 

wll - w44 ' 

Ray velocity around the axis of symmetry and perpendicular to it 
We have just seen that close to the horizontal and vertical axes the phase veloc- 

ity for P- and SV-waves is elliptical. It has been shown (Levin 1978; Byun 1982) that 
when the phase velocity has elliptical shape the corresponding impulse response is 
also elliptical. Therefore, the group slowness expression that corresponds to (2), (5),  
(8) and (1 1) has the general form 

S2(4)  = S: cos2 4 + S$ sin2 4, (14) 

where 4 is the ray angle measured from the vertical and S ,  (ray slowness) is given 

bY 
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The traveltime equation for a ray that travels a distance 1 = d-2 
between two points is obtained by multiplying l2S2(6) ,  resulting in 

t2  = Ax2S; + Az2SZ, (16) 

which has the same form as the isotropic moveout equation. Velocities estimated 
from the moveout around one axis using this equation are called NMO velocities 
and velocities estimated from arrival times along the same axis are called direct 
velocities. Hence the different names chosen for the phase velocities around the axes 
( W,). 

Double elliptical approximation 

The parameters S ,  (ray slownesses) can be estimated by fitting traveltime data 
with traveltime equations such as (16) around the horizontal and vertical axes. 
From S ,  we can also estimate the elliptical phase velocity parameters W, by using 
(15). The parameters W, estimated in this way are useful, not only to approximate 
the slowness surface around the axes, but also at intermediate angles when the fol- 
lowing expression is used : 

This approximation is called double elliptical because it uses the elliptical param- 
eters estimated around horizontal and vertical axes. Its derivation is shown in the 
Appendix. Around the axis of symmetry and perpendicular to it, the previous 
expression has elliptical shape, which can be verified by taking the limit 0 N 0 and 
0 N 742. An approximation of the same functional form can be obtained for the 
group velocities. 

Figures 1 and 2 show how the approximation works in fitting the P slowness 
surface and impulse response. Note that around the horizontal the approximation is 
effective at angles close to 40". Close to the vertical it is good for smaller angles. 
Figure 3 shows how the approximation works in fitting the SV impulse response. 
Notice that it cuts out triplications. However, it is much better in fitting the slow- 
ness surface (where there are no triplications) as shown in Fig. 4. 

- _ -  
FIG. 1. Three different approximations (dashed curves) to the P impulse response. Left: verti- 
cal paraxial elliptical approximation (obtained from VSP data, for example). Centre: horizon- 
ta1 paraxial elliptical approximation (obtained from cross-well traveltimes). Right : Muir's 
double elliptical approximation. (Dellinger et ui. 1993). 
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FIG. 2. Three different approximations (dashed curves) to the P slowness surface. Left: verti- 
cal paraxial elliptical approximation. Centre: horizontal paraxial elliptical approximation. 
Right : double elliptical approximation. (Dellinger et al. 1993). 

From traueltimes to elastic constants 

For a given density and provided P- and SV-data around the horizontal and 
vertical axes are available, (3), (4), (6), (7), (9), (lO), (12) and (13) form an over- 
determined system of equations that relates four of the elastic constants of a trans- 
versely isotropic medium with W, , the latter being estimated from traveltimes using 
(16) and (15). P- and SV-traveltimes around the horizontal and vertical axes can be 

\ , 
’---* ‘  

FIG. 3. Three different approximations (dashed curves) to the SV impulse response. Left: ver- 
tical paraxial eiliptical approximation. Centre: horizontal paraxial elliptical approximation. 
Right : double elliptical approximation. (Dellinger et al. 1993). 

FIG. 4. Three different approximations (dashed curves) to the SV slowness surface. Left : verti- 
cal paraxial elliptical approximation. Centre: horizontal paraxial elliptical approximation. 
Right : double elliptical approximation. The agreement is so good for this example that the 
dashed curve is hard to see. (Dellinger et al. 1993). 
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measured with cross-well and VSP-like geometries, for example. Therefore, in order 
to use the double elliptical approximation to estimate elastic constants an inversion 
procedure is needed that fits traveitimes with ellipses described by the parameters 
s** 

F O R W A R D  MODELLING 
We start by defining the equations needed to perform the forward modeiiing 

step in the inversion algorithm. In a homogeneous eiliptical medium with a vertical 
symmetry axis, the traveltime between two different points separated by a distance 1 
is the Square root of (16), i.e. 

t = JAx’SX + AZSZ. 

S ,  and S,  are the horizontal 
is homogeneous, the raypath 

(18) 

and vertical slownesses respectively. Since the medium 
is straight. 

A heterogeneous medium can be approximated as a superposition of non- 
overlapping homogeneous regions. For this medium, the previous expression for the 
traveltime between two points can be easily generalized as follows : 

N 

ti = C ,/Ax$S$+ Az$S:~, i = 1, ..., M ,  
j= 1 

N 

= C tij, (19) 
j =  1 

where tij is the traveltime of the ith ray in the jth cell and S,, and SZj are the 
horizontal and vertical slownesses respectively in that cell. Axij and Azij are the 
horizontal and vertical distances travelled by the ith ray in the jth cell. If the slow- 
ness contrasts among adjacent cells are small, the raypaths can be approximated by 
straight lines. For larger contrasts, rays bend at each interface according to Snell’s 
law. In (19), N is the total number of cells and M is the total number of traveltimes. 

The slowness model can be seen as a vector s whose components contain the 
horizontal and vertical slownesses of each cell. This vector can be defined as follows: 

s i  = SXi 

S i + N  = SZi. 

Then, the slowness vector s has the following form: 

s = (SI, s1, ..., s,, SN+1, S N + 2 ,  ..., s2,)= (21) 

where T means transpose. The first N components correspond to the horizontal 
slownesses of all the cells and the second N components correspond to the vertical 
slownesses. When the model is homogeneous, s is 2-dimensional and in general, for 
a heterogeneous model described by N cells, s is 2N-dimensional. 
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Using the new notation introduced in (20), the traveltime equation (19) can be 
written as 

N 
ti = t is )  = 1 JA.$ Sf + A z ~  Sf+ N . 

j =  1 

Notice that when the medium is isotropic ( S j  = S j + N ) ,  (22) reduces to the familiar 
equation that approximates the traveltimes computed in an isotropic model 
described by cells (McMechan, 1983), 

t i =  5 S j J r n ,  
j =  1 

N 

= 1 S j l i j ,  
j= 1 

where lij is the length of the ith ray in the jth cell. 
In the next section we see that when (22) is linearized, it can be used for estimat- 

ing the horizontal and vertical slownesses in a heterogeneous anisotropic model 
given a set of traveltime measurements from a cross-well configuration. Equation 
(22) can also be used for surface geometries, as long as the depths of the reflectors 
are known a priori. 

INVERSE MODELLING 

Homogeneous rnodel 
Expression (22) will be used as a starting point to estimate the 2N-dimensional 

slowness vector s given the traveltimes from a cross-well experiment. However, we 
can investigate some of the dificulties in estimating such a vector by first studying 
the case of a homogeneous medium ( N  = 1). 

When the model is isotropic, we usually estimate the slowness S of the homo- 
geneous medium that best fits the traveltimes by simply averaging all the slownesses 
Si obtained from the individual rays, 

where Ii is the source-receiver distance and M is the total number of traveltimes. 
When the model is anisotropic, the 2D vector s that best fits the traveltimes can 

be obtained by generalizing the average (24). This generalization is, as expected, in a 
least-squares sense. Note that (16) is linear in S$ and S i  . Therefore, for a given set of 
traveltimes and source-receiver locations, it is possible to set up a least-squares 
problem to find the vector s of the homogeneous medium. Defining M ,  = Sy and 
M ,  = St , the least-squares problem is 
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where 

and 

Equation (25) can be solved in different ways. The most common approach is by 
using the normal equations, giving 

(2) = (MTM)-'MTd. 

However, the normal equations may have undesirable features with respect to 
numerical stability because the condition number of MTM is the Square of the con- 
dition number of M. If M is only moderately ill-conditioned, MTM is severely ill- 
conditioned. For this reason, methods that do not amplify the condition number of 
M should be used to solve systems such as (25) (for example QR factorization, Gill, 
Murray and Wright 1991). 

For estimating M ,  and M ,  simultaneously and accurately, M has to be well 
conditioned. Note that this is not the case when most of the elements of the matrix 
satisfy either Ax! 9 Az! or Azf B Ax:. These two conditions describe cases when 
most rays are travelling close to the horizontal or the vertical. In such cases, it is 
impossible to determine simultaneously both components of the vector s because 
the limited view of the measurements translates immediately into severe ill- 
conditioning. This can be understood by trying to estimate M, and M, from the 
simple cross-well experiment shown in Fig. 5, where Ax2 % Az;. In this case 

Ax2 Az: 
= ( Ax2 Azi). 

The eigenvalues of this matrix are 

Ax2 + Azi f ,/(Ax2 - A Z ? ) ~  + 4Ax2Az: 
2 A* = 

Since Ax2 % Azf, the eigenvalues to the first order are 



A N I S O T R O P I C  TRAVELTIME T O M O G R A P H Y  391 

FIG. 5. Cross-well experiment with two rays. 

The largest eigenvalue is related to the horizontal component of the slowness and 
the smallest one is related to the vertical component. In contrast, for a VSP-like 
geometry the largest eigenvalue is related to S,  and the smallest one is related to S ,  
(Dellinger 1989). Having more rays ( M )  without increasing the aperture does not 
solve the problem. In such a case, the largest eigenvalue of the matrix (MT M) tends 
to xE Axf and the smallest one tends to zero again. 

The previous inversion scheme ignores the estimation of the horizontal and ver- 
tical component of the slowness for heterogeneous models. 

Heterogeneous rnodel 
Equation (22) can be used as starting point to estimate s for all the cells at the 

same time. This equation is obviously non-linear in S j  and S j + N .  One way to solve 
the problem is by a sequence of linearized steps. We start by approximating (22) by 
a first-order Taylor series expansion centred in a given model so: 

t i (S )  x ti(s0) + Vt,(so) . (s - s g )  
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where the elements of the Jacobian J, are 

and t i j  is the traveltime of the ith ray in thejth cell of the model so (equation (19)). If 
we assume that ti(s) represents one component of the vector of measured traveltimes, 
we can compute the perturbations Asj = ( S j  - Soj)  once the traveltimes in the refer- 
ence model so have been calculated. The perturbation As = (s - so) is the solution of 
the following system of equations 

J AS = At (28) 
where Ati = ti(s) = ti(so). 

Note that the matrix J depends explicitly on the slowness of the reference model 
so in contrast to the isotropic case where the matrix depends only on the lengths of 
the rays at each pixel. In the isotropic case if the rays are straight, the estimation of 
the slowness becomes a linear problem because J is a constant. In the anisotropic 
case, however, the problem is still non-linear even if the rays are straight. Ray 
bending introduces another source of non-linearity. 

When the model is isotropic and 2D, the largest singular values of the Jacobian 
correspond roughly to horizontal structures in the model and the smallest to verti- 
cal structures (Bregman, Bailey and Chapman 1989; Pratt and Chapman 1992). 
When the model is elliptically anisotropic, Michelena (1993) has shown that the 
smallest singular values of the problem correspond, in model space, to horizontal 
variations in the vertical component of the slowness, whereas the largest ones corre- 
spond to vertical variations in the horizontal component, which is roughly a com- 
bination of the results obtained for anisotropic homogeneous and isotropic 
heterogeneous models. This means that estimating S ,  in layered models is an easier 
problem than estimating S ,  in 2D models, as will be shown in the examples. Michel- 
ena (1993) also showed that in data space the largest singular values of J correspond 
to traveltimes in the far vertical offsets. 

In the examples shown later, (28) will be solved using the LSQR variant of the 
conjugate gradient algorithm (Nolet 1987). We show that after a few iterations with 
this method at each linearized step, the ill-conditioning of J caused by the limited 
view of the measurements is better handled than by solving the normal equations. 

Meaning of the results 
Isotropic tomography fits the data with circles (t2 = (x2 + z2)S2). Anisotropic 

tomography, as presented, uses ellipses (t2 = x2S; + 2’s:) instead of circles. 
Depending on the range of ray angles available (or the geometry used) and the wave 
type under consideration, the estimated slownesses S ,  and S ,  may or may not corre- 
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spond to the real slownesses of the medium. In the cross-well synthetic examples 
that follow, the estimated slownesses are S, and S, because the synthetic models 
used are elliptically anisotropic. In the real data examples, the estimated shownesses 
are S ,  and SZNMO since the vertical slowness of the best-fitting ellipses are not neces- 
sarily the same as the true vertical slownesses S ,  from sonic logs. We shall see, 
however, that SzNMO is closer and better correlated to the sonic log than S ,  . 

SYNTHETIC EXAMPLES 

1D inversion 
We now apply the previous technique to the inversion of traveltimes for a cross- 

well geometry. Synthetic data were generated through the 1D isotropic model 
shown in Fig. 6, using a geometry of 17 sources and 17 receivers equally spaced at 
the source and receiver well respectively. If we plot the components of the slowness 
vector s (equation (21)) for this model, we obtain the profile shown at the right-hand 
side of Fig. 6. Both slowness components are identical because the model is iso- 
tropic. In this example, the slowness contrast between the background and the 
anomalous layer is small (1%) and therefore, the propagation of the energy can be 
safely modelled by straight raypaths. 

-600- 

2 ‘i. 

FIG. 6. Synthetic isotropic model used to test the algorithm. The slowness vector s that 
describes this model is shown on the right. 
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The inversion can be constrained by allowing only vertical variations in the 
model if it is known a priori that the medium is layered. By doing this, we eliminate 
instabilities and non-uniqueness in the inversion associated with lateral variations, 
retaining only those associated with the vertical component of the slowness, which is 
not sampled suffrciently by the cross-well recording geometry. 

The image area was divided into 100 layers of equal thickness (8 ft.). The inver- 
sion process has to estimate 200 parameters from 289 traveltimes. Figure 7 shows 
the slowness vector obtained after 60 conjugate gradients (CG) iterations. There is 
no difference between the given S (Fig. 6) and the estimated one (Fig. 7). Note also 
that the results can be represented as a function of depth as well as a function of the 
index of the slowness vector. In the next two results the depth axis will be omitted. 

Figure 8 shows the convergence as a function of the CG iterations. The result 
shown in Fig. 7 corresponds in Fig. 8 to 60 CG iterations in the axis number of 
iterations. The two 'hills' represent the slowness at the anomalous layer. Con- 
vergence is achieved when the top and the bottom of the hills are flat. Note that the 
horizontal component of the slowness converges faster than the vertical component. 
This is because in the given model, the horizontal component of the slowness in the 
anomalous layer is better sampled than the vertical component: the range of ray 
angles (absolute values) is from 0 to 53" (53 x arctan (s)) which is a typical range 
for cross-well experiments. 

When synthetic data is generated through the model shown at the top of Fig. 9 
(where the well-to-well separation has been decreased), both components converge 
at the same rate. This is because the vertical component of the slowness is better 

slowness 

O m -  

FIG. 7. Result of the inversion of the synthetic data generated by the model shown in Fig. 6. 
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isotropic mudel 

s(i’ I 

FIG. 8. Variations of the slowness vector as a function of the number of conjugate gradient 
iterations. The original model is shown at the top. The axes ‘ i ’  and ‘CG iterations’ have been 
interchanged from one plot to the other. 
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isotropic model 

FIG. 9. Variations of the slowness vector as a function of the number of conjugate gradient 
iterations. The only difference between the model shown at the top and the model of Fig. 8 is 
in the horizontal dimension. The axes ‘ i ’  and ‘CG iterations’ have been interchanged from 
one plot to the other. 
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sampled now than before: the range of ray angles varies between 0 and 76" 
(76 N arctan (M)). 

The previous results te11 us that if it is not possible to perform 'enough' CG 
iterations in order to reach the flat top of both hills (Figs 8 and 9), we may wrongly 
conclude that the medium is anisotropic because the components of the slowness 
vector may not converge at the same rate. Severe limited-view problems as well as 
low signal-to-noise ratios are some reasons that may limit the number of CG iter- 
ations that can be performed before the smallest singular values of the problem start 
playing any role. 

20  inuersion 

To test the performance of the algorithm in inverting data generated in a 2D 
model, we computed synthetic traveltimes through the isotropic model shown in 
Fig. 10. The separation between contiguous sources and receivers is 10 ft and for 
each receiver gather, only sources located at +50" are used. With a geometry like 
this, we pretend to simulate the geometry of the real data example to be analysed 
later. As in the 1D example, the slowness contrast between the anomaly and the 
background is small (5%), and therefore, straight rays can again be used. 

The unknown model was discretized into 241 x 46 pixels (5 x 5 ft') and there- 
fore, the inversion has to estimate 241 x 46 x 2 parameters from 2200 synthetic 
traveltimes. Figure 11 shows the results of the inversion. The slowness of the iso- 
tropic circular anomaly (1.05) is better estimated by the horizontal than by the 

distance (ft) 
0 200 

0 

UO rn 

0 ici 

FIG. 10. Isotropic slowness model. The radius of the circular anomaly is r = 50 and is centred 
at (100,700). The background slowness is 1.0 and the slowness of the disc is 1.05. 
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FIG. 11. Reconstructed horizontal and vertical component of the slowness. The ratio of the 
two components is shown at the right. 

vertical component of the slowness. This is not the case in the 1D inversion, where 
both slowness components can be perfectly recovered even though the vertical com- 
ponent of the slowness is not properly sampled. The extra information introduced in 
that problem by assuming that the model is layered compensates for the limited 
view of the measurements. In the 2D inversion, where the unknown is less con- 
strained, the better sampling of the horizontal component translates into its better 
recovery when compared with the vertical component and as a result, some artificial 
anisotropy is introduced by the reconstruction. In this noise-free example such an 
anisotropy is not greater than 3% as shown in Fig. 11 by the ratio S J S , .  Per- 
forming more CG iterations does not help to reduce this artificial anisotropy to 
zero, as in the 1D inversion (Figs 8 and 9). In the present case the images did not 
change after 120 CG iterations. This example shows that when the velocity contrasts 
are small, the amount of anisotropy introduced by the inversion can be of the same 
order as the expected heterogeneities. Similar problems may occur also when trying 
to estimate small variations in velocity anisotropy. 

The artifacts in both slowness components are similar to the well-known trunca- 
tion artifacts in isotropic inversion although they differ from one component to the 
other. The estimated S ,  is smeared along the horizontal direction whereas S,  is not. 
This is because the estimation of S ,  is not affected by rays that travel horizontally. 
The different character of the artifacts for each slowness component can limit our 
ability to recover variations in ‘true’ anisotropy at the same scale of variations in 
velocity when data from only one geometry is used. This will be clearly observed 
later in the application to field data. 
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FIELD DATA EXAMPLE 
Anisotropic tomography was performed using a field data set. This data set was 

acquired jointly by Amoco Production Company and Stanford University at an 
on-shore Gulf Coast site in Southeast Texas. The overall survey geometry is illus- 
trated in Fig. 12, and it is similar to the one used in the synthetic example of 2D 
inversion. The source (a piezo-electric bender bar) produced a sweep signal with 
frequencies between 400 Hz and 1600 Hz. The data were recorded with a sample 
interval of 0.1 ms. More details about the site and geometry are given by Harris et 
al. (1990). 

2439 

ds = 20 ft 

ds = 10 ft 

ds = 20 ft 

4159 

depth (ft) 

2688 , 

dr = 10 ft 

3996 

sources receivers 

FIG. 12. Overall survey geometry illustrating the shooting pattern. Receivers are spaced at 
dr = 10 ft between 2688 and 3996 ft. Sources are spaced at ds  = 10 ft intervals in primary 
target zone and ds = 20 ft. above and below the target zone. The average separation between 
Wells is 225 ft. 
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Nearly 5000 P-wave first arrival times were picked from the correlated data. In 
general, we found that the traveltimes corresponding to the near horizontal rays 
(near offsets) were more dificult to pick than those at far offsets. 

Because the shots are within L 50" with respect to the horizontal at each receiver 
location, we expect most of the data to be modelled appropriately by using elliptical 
anisotropy (Fig. 1). 

To measure the goodness-of-fit between measured and calculated traveltimes, we 
use the root-mean-Square value mismatch, 

error = J r  - C (tci - tJ2,  

where tri and tci are the measured and calculated traveltimes respectively and M is 
the total number of traveltimes. 

Our inversion estimates slownesses (S,) but we show velocities (V, = l/S,) in the 
examples that follow. 

Well deviation 

In this particular geometry, the Wells are not confined to a single plane. Instead, 
they deviate gradually from the vertical plane that contains both Wells at the near 
surface. We have taken this effect into account by following this two-step procedure: 

1. Find the true 3D distances between sources and receivers. 
2. Assume that one well is vertical (for example, the source well) and locate the 

receivers at the corresponding true relative distances and true depths in the other 
well. This is equivalent to locating the origin of the coordinates so as to measure 
the distances always at the source well. 

When correcting for the well deviation in this way, true source-receiver separa- 
tions are used in the inversion. The relative position of the two Wells after consider- 
ing the deviation is shown in Fig. 13. To use the true relative distances, it is 
necessary to move the receiver positions horizontally in the deviated well. This is the 
reason why the receiver positions in Fig. 13 appear horizontally smeared. The selec- 
tion of the vertical well used as a reference to measure the relative deviations is 
irrelevant if we assume that the model is 1D. In 2D, different distortions may occur 
depending on which well is chosen as a reference. 

ZD inversion 

The simplest inversion that we can carry out is when the model is homogeneous 
isotropic. What we obtain is the mean velocity (equation (24)), yso = 8452 ft/s. The 
next step is to assume that the model is still homogeneous but elliptically aniso- 
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distance ( f t )  
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FIG. 13. Positions of the source and receiver Wells after considering their relative deviations. 
Each dot represents a source or a receiver position (left and right respectively). Note that the 
density of sources is greater at the middle of the surveyed area than in the extremes. 

tropic. Using (25), we find that V, = 8586 ft/s and KNM0 = 8079 ft/s. Notice that for 
this particular recording geometry (Fig. 12), Fso is closer to V, than to EN,,, which 
means that the ‘averaging’ of the horizontal and vertical directions that the iso- 
tropic inversion implicitly carries out is not a simple arithmetic average. When the 
model is also heterogeneous, the same conclusion may be drawn as we show later. 

Equation (29) will be used as a measure of goodness of fit of the real data when 
using a certain model. For the homogeneous isotropic model error = 1.27 ms. When 
the model is homogeneous anisotropic, error = 1.17 ms. 

The result of the isotropic inversion assuming a layered medium is shown in Fig. 
14. Only traveltimes corresponding to rays below 2705 ft and above 4000 ft were 
used. This depth interval was discretized into 60 horizontal layers of equal thickness 
(21.583 ft). Straight rays were used to compute synthetic traveltimes since according 
to Harris et ui. (1990), small velocity variations are expected in this site. The iso- 
tropic 2D straight-ray tomogram shown in a later section is very similar to the 
isotropic 2D curved-ray tomogram obtained by Harris et al. (1990). Conjugate gra- 
dient iterations (40) were performed until no appreciable changes were seen either iq 
the model or in the error (29). This corresponds to reaching the flat part of the hills 
in Fig. 8. For the model shown in Fig. 14, error = 0.88 ms. 

We now assume the model to be anisotropic. The result of the inversion is 
shown in Fig. 15. For traveltimes computed with this model, error = 0.80 ms. The 
thick curve represents the horizontal velocity and the thin curve represents the verti- 
cal velocity. The first thing we notice is that as expected, V, is generally larger than 
EN,,. Figure 16 compares V, and KNMO with ss0. In general, Fs0 is closer to V, 
than it is to ENMO, which is consistent with the previous results of the inversion 
assuming a homogeneous medium. This means that for the type of recording 
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FIG. 14. Result of the isotropic layered inversion. The thickness of each layer is 21.583 ft. 

geometry used (ray angles between 0 and +5OO) the isotropic inversion is affected 
primarily by the horizontal component of the velocity. Since there are fewer rays at 
large angles, the isotropic inversion is less constrained by them. However, rays at 
large angles contain independent information that might be important in improving 
horizontal resolution in 2D models. 

Sonic logs were available in this site at both Wells (Fig. 17). They sample the 
vertical velocity close to the well at frequencies (- 10 kHz) much larger than the 
typical frequency of the cross-well data (-1 kHz). To compare the information 

veloci ty  (ft/s) 
7000 8000 9000 10 100 

FIG. 15. Result of the anisotropic layered inversion. The thickness of each layer is 21.583 ft. 
The differences between V, (thick line) and V,,,, (thin line) are represented by two colours: 
light gray, when V ,  > V,,,, and dark gray when V, < V,,,, . 
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FIG. 16. Comparison between isotropic and anisotropic layered inversion. Left : V,,, (thin 
line) and V, (thick h e ) .  Right: V,, (thick line) and V,,,, (thin h e ) .  The differences between 
the isotropic and anisotropic inversion are represented by two colours: light gray when 
y ,  > V ,  or V,,,, , and dark gray when V,, < V, or V,,,, . 

obtained from these two types of measurements (1D tomogram and velocity logs), 
we performed averaging on the logs. Firstly, we averaged each slowness log in 
blocks of equal thickness and equal to the layer thickness in the 1D tomographic 
inversion. Secondly, the two averaged slowness logs were averaged again into a 
single one. The purpose of the last averaging was to produce a single curve to 
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FIG. 17. Sonic logs at the source and receiver well respectively. The thin line represents the 
original log. The thick line represents the corresponding log averaged in 60 layers of equal 
thickness (21.583 ft). 
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FIG. 18. Average velocity log (V,) compared with Qs0 (left), V ,  (Centre) and V,,,, (right). 
V,,, is closer and better correlated with the velocity log. 

compare with the V,,,, estimated by our algorithm. Figure 18 compares the 
average velocity log with Qs0, V, and EN,,.  Note that is not only much 
closer to the average velocity log (as expected) but also better correlated with it, 
when compared with bs0 and V,. Figure 18 shows that the assumption of an ellip- 
tical model for the velocities is an improvement over the assumption of a circular 
one. 

The comparison between the average velocity log and EN,, has to be inter- 
preted carefully because each curve averages the medium velocities in a different 
way (in the place where the medium changes laterally). On one hand, the average 
log assumes that at each depth the medium has only two velocities that contribute 
with equal weight in the estimate (mean). On the other hand, the way the inversion 
averages the lateral changes in the medium properties when computing EN,, is not 
clezr at this point. It is also not clear how the potential errors caused by inverting 
for 1D variations in a 2D medium propagate into the solution. The 2D nature of the 
true medium will be evident later when performing 2D inversion. 

It can be seen in Fig. 18 that V,NMo is systematically larger than the log velocity 
(V,). This is exactly the opposite to what was expected from Fig. 1. We explain 
below different sources of biases in the inversion that may explain this unexpected 
result. 

The ratio V’V,,,, correlates roughly with the lithology, as shown in Fig. 19. In 
this figure, the thick line corresponds to the ratio V , I V , N M ,  and the thin line corre- 
sponds to the average spontaneous potential (SP) log. The average SP log was 
obtained by blocking each log separately, taking the average of the results and 
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FIG. 19. Anisotropy ratio VJV,,,, (thick line) compared with the SP log (thin h e ) .  

removing a linear trend with depth in the final average. Note the good correlation 
between large SP values (shales) and large anisotropy ratio, and between low SP 
values (Sands) and isotropic layers. However, remember that both curves represent a 
different type of averaging of the lateral changes in medium properties. 

In the anisotropic inversion, we found that for this particular data set, 60 layers 
of 21.583 ft each was a good compromise between resolution and stability. Reducing 
the layer thickness by half has the effect (not shown) of increasing the resolution at 
the expense of large veriations and instabilities in the vertical component of the 
velocity that is not well sampled by the recording geometry. The horizontal com- 
ponent of velocity is generally more stable than the vertical for smaller layer thick- 
nesses. Obviously, increasing the layer thickness made the inversion more stable at 
the expense of less resolution. 

20  inversion 

When the relationship between the data and the unknown is linear, we should 
obtain the moded that ‘best’ fits the data in only one solution of the ray-tracing 
problem. When the problem is non-linear one approach is to solve it as a sequence 
of linearized steps. We usually call these steps external iterations, to differentiate 
them from the internal iterations needed to solve each linear problem when using 
iterative techniques such as conjugate gradients. Ideally, if the problem has n 
unknowns, each external iteration should consist of m CG steps (m internal 
iterations), where m < n is the number of different singular values. When dealing 
with field data, however, we might not be able to do this because of the presence of 
the noise. Noise can affect the solution of each linearized problem in the following 
ways: (a) it might be amplified into the model by the smallest singular values recov- 
ered when m iterations are performed; (b) it might affect considerably the accuracy 
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FIG. 20. Isotropic 2D inversion. The image has been divided into 131 x 26 square cells 
(10 x 10 ft2 each). 

of the search directions and consequently, the position of the minimum associated 
with the solution. Therefore, we have to deal carefully with noise. 

Under the straight-ray assumption, only one external iteration was needed in the 
1D inversion to find the model shown in Fig. 15. By selecting the layer thickness 
appropriately, we were able to perform the CG iterations required to reach con- 
vergence without being much affected by noise : thicker layers damped the solution 
whereas thinner layers introduced instabilities. In 2D, however, the situation is dif- 
ferent. We found here that the results were more sensitive to noise in the data than 
1D results. This is not surprising because now we are trying to estimate horizontal 
variations in SrNMO which, as explained before, are related to the smallest singular 
values of the problem (that amplify the noise). 

Because of the sensitivity to noise of the 2D inversion, it is necessary to avoid 
‘many’ CG iterations at each linearized step. After several tests combining in differ- 
ent ways external and internal iterations with mean-average smoothing of the slow- 
ness model, we adopted a conservative approach to minimize the error (29). The 
approach consisted of the following steps: 

(1) Compute traveltimes in the given model, calculate the matrix J and find the 
residuals. 

(2) Approximate the solution of the linear problem (28) by applying a few 
(typically one or two) CG iterations. 

(3) Smooth the updated slowness model. 
(4) Repeat the previous steps until there is no reduction in the sum (29). 
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When this happens, either quit or increase the number of CG iterations by one 
and check if further reductions in the mismatch are obtained. When the problem is 
linear, the solution is not obtained in one iteration only due to the presence of the 
noise. 

When the previous procedure was applied to estimate an isotopic model from 
the data, we obtained the image shown in Fig. 20 (error = 0.76 ms). In this case, the 
unknown model was discretized into 131 x 26 Square cells (10 x 10 ft2 each). It is 
interesting to notice that adding more degrees of freedom in structure (more cells) 
does not substantially improve the parameter error obtained with 28 times less 
degrees of freedom in the 1D anisotropic inversion. The model shown in Fig. 20 is 
very similar to the one obtained by Harris et al. (1990), where ray bending has been 
taken into account. 

The result of the anisotropic 2D inversion is shown in Fig. 21 (error = 0.60 ms). 
Note that V, is remarkably similar to Ks0, as in the 1D example. The main differ- 
ence between these two images is that in V,  (Fig. 21) the events tend to be more 
horizontally smeared than in Kso (Fig. 20). This was expected from the synthetic 
example shown in Fig. 11. 

The events in the estimated vertical component of the velocity tend to be 
smeared in the direction of the steepest rays and the spatial resolution in this com- 
ponent is poor when compared with qso and V,. This is because V,  is not ade- 
quately sampled by the recording geometry. In the 1D case, this lack of information 
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FIG. 21. Anisotropic 2D inversion. Each image has been divided into 131 x 26 Square cells 
(10 x 10 ft2 each). Left: V,.  Centre: V,,,,. Right: V,/V,,,, . The spatial resolution of V , N M ,  is 
poor when compared with the spatial resolution of V,. The ratio V'/V,,,, has been separated 
in four areas that show percentages of anisotropy: white (ratio > 1.25), light gray 
(1.06 < ratio < 1.25), dark gray (0.90 < ratio < 1.06) and black (ratio < 0.9). The dark gray 
areas can be considered isotropic. 
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is compensated by assuming a layered model, which allows us to perform more CG 
iterations without having problems with noise. In 2D this is not possible and there- 
fore, the results can be obtained where V, is close to convergence but cNM0 is far 
from that point. This in turn may introduce artificial anisotropy. 

cannot be estimated at the same resolution (at least using 
only this type of recording geometry), it is not possible to estimate spatial variations 
in velocity anisotropy (the ratio V,/V,,,, for example) at the same scale of the 
variations in velocity. Even so, an image that shows variations in velocity aniso- 
tropy can be useful if it accounts only for the large-scale variations that are well 
resolved by the inversion. Such an image is shown in Fig. 21. This image is divided 
into four areas : highly anisotropic, moderately anisotropic, isotropic and aniso- 
tropic with V , N M o  > V,. We can see that most of the model is isotropic whereas the 
anisotropic areas are associated with high-velocity zones, possibly shales. 

Figure 22 summarizes how the mismatch estimated by (29) (error) changes for 
the different parametrization used. The error decreases roughly 40% from the 
homogeneous to the 1D inversion and about 50% from the homogeneous to the 2D 
inversion. This means that for this data set, by trying to estimate lateral variations 
in the medium (small singular values) a 10% reduction in the mismatch is gained 
with respect to estimating oniy vertical variations in the model (largest singular 
values). Note also that mismatch is not substantially reduced when comparing the 
1D anisotropic inversion (letter D in the plot) with the 2D isotropic (letter E), with 
28 more degrees of freedom. Equivalently, this suggests that anisotropy in the data 
can be reconciled with either isotropic heterogeneity or anisotropic less heter- 
ogeneous media. 

Because V, and 

Biases in the inuersion 

The main problem considered in the previous sections was how the limited view 
of the measurements affects our ability to estimate velocities in different directions. 
By assuming elliptical anisotropy it was necessary to estimate only two velocities: 
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FIG. 22. Errors for the different parametrizations. (A) Homogeneous isotropic; (B) homoge- 
neous anisotropic; (C) 1D isotropic; (D) 1D anisotropic; (E) 2D isotropic; (F) 2D anisotropic. 
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horizontal and vertical. Of course, this is too simple to describe the real complexities 
of the velocities in many cases but it is the first step beyond fitting the data with 
circles (isotropic tomography). Unless we considerably constrain the inversion 
(layered models) or we have measurements from a wide range of angles, it is difficult 
to estimate accurately and simultaneously S ,  and SeNMO . Unfortunately, even with 
constraints and wide-angle measurements, many other factors may affect the results. 

0 Picking errors. These errors may systematically increase or decrease the velocities, 
depending on which part of the first arriving wavelet has been picked. Picking 
before the correct value speeds up velocities whereas picking later slows them 
down. This may explain why, in Fig. 15, V,,,, is systematically 1 or 2% faster 
than the sonic log. 
Well deviation. The Wells deviate in 3D but we decided to work in 2D. If the real 
3D variations in the medium are moderate, this is a good approximation, but it 
may not be otherwise. When first testing our algorithm with real data the well 
deviation was not considered. We simply substituted each well by a vertical one 
located at its average surface location. The results (not shown) were higher velo- 
cities (than those shown in Fig. 12) where the Wells were actually closer and lower 
velocities where the Wells were actually farther apart. Considering the well devi- 
ation affected S,  more than S , N M o .  

Head waves versus body waves. Although this may be considered a picking error, 
it primarily affects traveltimes at vertical near offsets (small ray angles) in low- 
velocity layers. These errors mainly affect the estimation of S ,  because SzNMO does 
not use information from rays that travel at small angles. In principle, when head 
waves are inverted like body waves, the estimated horizontal velocity turns out to 
be faster than the real one. 
Ray bending. When not considered, it can introduce errors in the estimation of 
velocity anisotropy in places where the velocity contrasts are large. 

All the previous factors, when not considered appropriately, may produce artifi- 
cially anisotropic results. For this reason and the ill-conditioning of the problem 
studied later, the estimation of small-scale 2D variations in velocity anisotropy is a 
difficult task. 

Among these factors we have: 

CONCLUSIONS 
We have presented the basic theory and examples of an algorithm that performs 

anisotropic traveltime tomography. The algorithm generalizes the well-known tech- 
niques of tomographic traveltime inversion by using models discretized into a set of 
homogeneous, elliptically anisotropic cells, where each cell is characterized by two 
slownesses, one vertical and the other horizontal. Both components of the slowness 
can be estimated simultaneously provided that the range of ray angles is great 
enough. Otherwise the problem becomes ill-conditioned. As expected for cross-well 
geometries, it is more difficult to estimate the vertical component of the slowness. In 
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particular in 2D, the estimated vertical component of the slowness may have such a 
poor resolution that it is difiicult to estimate the spatial variations of velocity aniso- 
tropy at the same scale of velocity heterogeneities. 

Due to the limited view of the measurements, when iterative techniques such as 
conjugate gradients are used to estimate velocity anisotropy, early termination of 
the iterations may produce artificial anisotropy. This is more severe in 2D than in 
1D estimation of velocity anisotropy. 

If traveltimes for P-, SV- and SH-waves from cross-well and VSP geometries are 
available, anisotropic tomography as we propose it can be used within the frame- 
work of the double elliptical approximation to estimate 1D and 2D variations of the 
elastic constants. 
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A P P E N D I X  
DERIVATION O F  T H E  DOUBLE E L L I P T I C  A P P R O X I M A T I O N  

First we define some new symbols: 

c = cos (e), 
s = sin (O), 
8 = group angle from the vertical, 
c = cos ((b), 
S = sin ((b), 
(b = phase angle from the vertical. 

It has been shown (Levin 1978; Byun 1982) that a phase-velocity expression of 
elliptical shape, 

w(e) = w,s2 + wzc2, 

M ( 4 )  = M ,  Sz + M ,  C2, 

(Al) 

(A2) 

leads to a ray-velocity expression of elliptical shape, 

where 

1 
M =-. 

* w* 
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The previous expression for the dispersion relation can be written as 

(W, s2 + w, 4 3  

(W, s2 + w, c2)2 w(e) = 

- w: s6 + w33 WZ)S4C2 + w 3 3  Wx)c"s2 + w: c6 
(W, s2 + w, c2)2 - 

If the quantities 3 W, and 3 W, are approximated as follows 

3 w, = 2 w, + w,,,, 7 

3 w, = 2w, + w,,,, , 
it results in the double elliptical approximation: 

To understand the meaning of the NMO parameters introduced in (A5), we 
expand (A6) around 8 = 0, keeping only terms up to c2. After some algebra we 
obtain 

w(e) = w,c2 + W,,,~S~. 

w(e) = w,,,,c2 + w,s2. 
After expanding around 8 = 4 2 ,  we get (keeping only terms up to s2) 

We see that the NMO parameters are obtained by fitting the slowness surface with 
ellipses around horizontal and vertical axes. If the true wave surface is elliptical, the 
NMO parameters are equal to the real ones but otherwise they simply describe, 
along with the true slownesses, the best-fitting ellipses around the axis of symmetry 
and perpendicular to it. 

Note that in (A6) the phase velocity is a combination of four parameters, as well 
as the exact expression for phase velocity (for P- and SV-waves) that is a com- 
bination of four elastic constants. The reader might wonder about the usefulness of 
an approximation that has the same number of parameters as the exact expression. 
The difference is that in the exact expression the estirnation of the parameters (elastic 
constants) is difficult whereas in the approximate one it is simple because of their 
simple relationship with ray slownesses along the axes (A3). 

Equation (A6) comes from approximating (A4) by introducing the NMO phase 
velocities W, . Equation (A4) comes from (Al) after evaluating the following expres- 
sion at n = 2: 

Different values of n will produce approximations more or less accurate than (A6). 
For example, when n = 1 the result is a three-parameter approximation for the 
phase velocities that is less accurate than the double elliptical approximation. This 
issue is explained in detail by Dellinger et al. (1993). 
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By following the same steps as before but starting from (A2), we obtain the 
approximation for the ray slowness squared: 

MXC6 + M 3 2 M ,  + M Z , ~ o ) C 4 S Z  + M,2(2M, + M X , ~ o ) C 2 S 4  + MZS6 
M ( 4 )  = (M,C2 + M,SZ)’ (A8) 
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