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Tomographic traveltime inversion using natural pixels

R. J. Michelena* and J. M. Harris*

The problem consists of determining the unknown coeffi­
cients an from the measured traveltimes. Once these coeffi­
cients have been calculated, the computation of the sum (1)
is straightforward.

The representation (1) has two important degrees of free­
dom that influence decisively the kind of results obtained.
These are the number (M) and kind of functions I3n(r) to be
used. The most common choice for the functions f3n(r) is
orthogonal cells (square or cubic pixels), and in that case the
coefficients an represent the slowness within each cell (Me­
Meehan, 1983; Ivansson, 1985). Although this is the most
popular basis function for estimating the slowness model,
others have been suggested recently. Harlan (1989) defines
the velocity function as a sum of smooth basis functions
(Gaussians), and Van Trier (1988)defines the functions f3n(r)
as cubic B-splines multiplied by functions that reproduce the
expected structure of the model. The number of functions M
is also arbitrary but is usually small to avoid having to solve
a huge system of equations.

The kind and number of functions used for expanding the
slowness model determine many of the general features of
the final image. With the same data set it is possible to obtain
different results just because different parameterizations
have been used. However, the goal is to obtain a recon­
structed model free from these artifacts of parameterization,
which means the selection of the basis function is critical in
the inversion process and thus should be considered more
carefully, as described below.

There are no general criteria for deciding which represen­
tation is the best, although some may have clear advantages
for solving specific problems. Our selection of the basis
function will be based on minimization of the expression that
estimates the norm of the null space of the problem

ABSTRACT

Traditionally in the problem of tomographic travel­
time inversion, the model is divided into a number of
rectangular cells of constant slowness. Inversion con­
sists of finding these constant values using the mea­
sured traveltimes. The inversion process can demand
a large computational effort if a high-resolution result
is desired.

We show how to use a different kind of parameter­
ization of the model based on beam propagation paths.
This parameterization is obtained within the frame­
work of reconstruction in Hilbert spaces by minimiz­
ing the error between the true model and the estimated
model. The traveltimes are interpreted as the projec­
tions of the slowness along the beampaths. Although
the actual beampaths are described by complicated
spatial functions, we simplify the computations by
approximating these functions with functions of con­
stant width and height, i.e., "fat" rays, which collec­
tively form a basis set of natural pixels.

With a simple numerical example we demonstrate
that the main advantage of this parameterization.
compared with the traditional decomposition of the
model in rectangular pixels, is that 2-D reconstructed
images of similar quality can be obtained with consid­
erably less computational effort. This result suggests
that the natural pixels can provide considerable com­
putational advantage for 3-D problems.

INTRODUCTION

The process of reconstructing an image using line integrals
through it is called tomography. In traveltime tomography
the image to be reconstructed is the slowness model S(r).
The reconstructed model S(r) is usually represented as a
linear combination of functions f3n(r) in the form

M

S(r) = ~ anf3n(r).
n = 1

M

S(r) - ~ anI3n (r)
n~1

(I)

(2)
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636 Michelena and Harris

Note that the system of equations (8) is square. If all the
sampling functions are independent, the problem is well
conditioned and, therefore, the system (8) has a unique
solution. A unique solution is expected because the orthog­
onal projection of f(x) in the space F 1 expanded by the
functions I3m(x) is unique (Figure 1). If any of the sampling
functions can be expressed approximately as a linear com­
bination of the others, the problem becomes ill conditioned
since the rows (or columns) in the matrix of equation (8) are
not independent any more.

where S(r) is the true slowness model. Due to the nature of
the measurements in traveltime tomography (integral along
beampaths), we show that the minimum of expression (2)
can be reached when the functions I3n(r) describe the beam­
paths and when M equals the number of measurements
available (because there is only one measurement per beam­
path). The first part of the paper demonstrates this fact
within the framework of reconstruction in Hilbert spaces.
The remainder presents a comparison of the inversion of
synthetic data using the traditional representation of the
model in square pixels and the proposed representation in
constant regions along the beampaths called natural pixels.

RECONSTRUCTION IN HILBERT SPACES

N

dm = 2: an<l3n(x), I3m(x)
n = I

m = 1, ... , N. (8)

A Hilbert space is a linear space on which an inner product
is defined. For example, the inner product for the Hilbert
space L 2 of the Lebesque square-integral functions of sup­
port il is

We can assume that the particular function f(x) that we
want to estimate belongs to a Hilbert space H. Let's assume
also that the information we have aboutf(x), i.e., data, is a
set of inner products of the functionf(x) with a finite set of
known functions I3m(x) E H

<f(x), l3(x» = Lf(x)l3(x) dx. (3)

Minimum norm solution

This same result for J(x) can be obtained through minimiza­
tion of the norm Ilfz(x)11 with respect to the unknown
coefficients an (Darling et al., 1983),

N

min Ilfz (x)llz= min f(x) - 2: an I3n (x) (9)
n = I

For this reason, the estimate J(x) is called the minimum
norm estimate of the unknown function f(x). This estimate

dm = <f(x), 13m (x) m= 1, ... ,N. (4)

The meaning of the functionjyfx) is explained by multiplying
both sides of equation (5) by I3m(x) and integrating in il:

N

dm = 2: an <l3n (x), 13m (x) + <h (x), 13m (x». (6)
n = I

Since <h(x), 13m (x) = 0, we can say thatfz(x) contains the
information about f(x) that does not affect the measure­
ments made by the sampling functions I3m(x). Finally, the
estimaten» of f(x) can then be written as

= true image

f 1 (x) = estimate of f(x)

:::J
C

"

(J)

~a.en

-x....-
N-

(5)

(7)
N

lex) =fl(x) = 2: an13n(x),
n = I

N

f(x) = 2: an I3n (x) +h (x).
n = I

In this context, the data can be interpreted as the projections
of the unknown functionf(x) onto the "sampling" functions
I3m(x).

If F) is a closed linear subspace of the Hilbert space H,
then H = F) EB F{ (Berberian, 1976), where Fjl is called the
orthogonal complement of Fl' From the projection theorem
(Stakgold, 1979), we can always decomposef(x) intofl (x) +
hex) (Figure 1), wherefl(x) E F 1 andh(x) E Fll- ;flex) is
called the orthogonal projection of/ex) in Fl' If we assume
that the functions I3n(x) form a basis of the space F 1, we can
write

where the coefficients an are calculated from the forward
equation for the data dm , FIG. 1. Orthogonal projections of the true image.
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Tomographic Traveltime Inversion 637

!(x) is unique and consistent with the data [equation (8)]; it
is also strongly related to the way the modeled data are
generated, because the unknown functionj(x) is expressed
as a linear combination of the sampling functions I3m(x) used
to compute the forward modeling [equation (4)]. This means
that each experiment will suggest "naturally" the recon­
struction procedure which produces the minimum norm
solution.

Examples of different sampling functions in different prob­
lems are the beampaths in the problem of traveltime tomog­
raphy, complex exponentials when the measurements are
the frequency components of j(x), shifted versions of one
function when the measurements represent the convolution
of the unknown with a given filter, etc. When the measure­
ments are the frequency components of j(x), the minimum
norm estimate is simply the Fourier series expansion off( x)
(Stakgold, 1979). Infact, equation (7) can be interpreted as a
generalized Fourier series for basis sets not necessarily
orthogonal.

If we expand J(x) in any other set of basis functions
{an(x), n = I, ... , M}, the norm of12(x) is

of the pointer of the digitizer [for simplicity, the function
Rtx, y) is assumed to have unit area]

d; = ( O(x, y)R;(x, y) dx dy , (13)
In,

d., i = I, . . . ,N are the data points and D; is the support of
the ith pixel.

Given the inner product (13), the minimum norm estimate
of O(x, y) according to equation (7) is

(14)

(15)

(12)

(i = 1, ... , N)

N

O(x, y) = L anRn(x, y).

di x, y) = O(x, y) * R(x, y),

where

{
I if (x, y) is in the pixel i

R;(x, y) = 0 otherwise;

where d(x, y) is the digitized image. This is equivalent to
superimposing a square grid. for example, over the object
and calculating the function di x, y) from the volume of the
object in the support of each pixel surrounding the grid
point. This procedure can be expressed as

(10)
n~1

M

Ilfz(x)11 = j(x) - L cnan(x)

Minimizing this expression with respect to the unknown
coefficients C n' we obtain

11~1

The coefficients a11 can be found from

M

(f(x), am (x) = L cn(an(x), am(x» m = I, ... , M.
n~1

(\ I)

N

d.; = L an(Rn(x, y), Rm(x, y)
n~1

m = I, ... , N. (16)

As expected, the reconstructed object is formed with a
superposition of N cells, each with constant height d; and
located where the measurements were taken. If we use any
other basis set instead of R;(x, y), it is possible to get an
estimate that does not reproduce the data, or requires more
model parameters to get a better representation.

Fourier analysis is another example where the sampling
functions exp(ik nX) are the same ones used to expand the
estimate of the unknown. The result is also a minimum norm
estimate.

The theory of reconstruction in Hilbert spaces generates
consistent estimates of the unknown in the sense that the
same basis set used to sample the function is used to expand
it. The two previous examples (orthogonal sampling and
Fourier reconstruction) confirm that in some situations this
might be a convenient choice among many other possibili­
ties. In the following sections we will exploit this idea of
consistency in the problem of traveltime tomography where
the data are generated in a very specific way (integrals along
beampaths).

Note that the independent term on the left-hand side in
equations (11) is formed by the inner products of the selected
basis function with the unknown function j(x). Note also
that the matrix elements are the inner products among the
different elements of the selected basis. The independent
term is equal to the measurements only if the basis set used
for expanding j'(x) ({an(x), n = I, ... ,M}) is the same one
used for generating the data, i.e., an = I3n' If any other basis
set is used, an 'I J3n' then the independent term must be
computed from the measurements. Therefore, the choice an

= J3n is a convenient one among many other basis sets
because the solution obtained is still minimum norm and the
independent term in equation (I \) directly represents the
measurements. We will see later that in the problem of
traveltime inversion the functions I3n(x, y) are the beam­
paths and then the minimum norm solution can be obtained
easily from equation (7).

We illustrate these ideas with a simple example, which
although not a geophysical case, can help explain why
square orthogonal pixels are a convenient basis set when the
measurements represent the average of the unknown over
the same square regions. When the measurements have a
different meaning, it might be computationally easier to get
the minimum norm solution by using a different basis set.
Consider a two-dimensional (2-D) object O(x, y) (a photo­
graph, for example). The process of spatial discretization of
the object can be interpreted as the convolution of O( .r, y)

and the sampling function R(x, Y), which describes the shape

According to the definition of R;,

Then, an = d; and the estimate becomes

N

O(x, y) = L dnRn(x, y).
n~1

(17)

(18)
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638 Michelena and Harris

TOMOGRAPHIC TRAVELTIME INVERSION

The traveltime along a ray f m in a medium where the
slowness is Sex, y) is traditionally given as

tm = LSex, Y)<l>m(X' y) dx dy, (20)

(24)
{

11>" if (x, y) is in the region of width
<l>i(X, y) = >.' centered along the raypath i

o otherwise.

Therefore, the matrix coefficients (<l>n(x, y), c!>m(x, y» are

Natural pixels

As a first approximation, we can describe the basis func­
tion <l>i(x, y) as functions of width >.' and height 11>.'

we showed that the square orthogonal pixels are a conve­
nient discretization that lead to minimum norm estimators
when the data are "point" orthogonal samples of the 2-D
function we want to reconstruct. The discretization along the
beampaths comes from the fact that they are the regions
sampled with each measurement in traveltime tomography.

When the beampaths are used, the discretization of the
model will depend in general on the particular data set to be
inverted, because it will reflect the propagation of the energy
in the medium. It does not have the advantage of other
parameterizations that can reflect some prior knowledge
about the model. In that sense, some flexibility is lost. The
discretization along the beampaths is similar to the discret­
ization of the model in square pixels in the way the prior
information is handled, since both assume no prior informa­
tion about the model. The difference is that when the
problem is nonlinear and it is solved as a sequence of
linearized steps, the discretization along the beampaths
adapts progressively to the real model.

Note that although the solution of the system of equations
(22) is unique, the null space of the problem has not been
suppressed, only separated at the beginning of the formula­
tion in the form of a space orthogonal to the beampaths
[function hex), equation (5)]. The same situation occurs in
discrete Fourier reconstruction, where for a given data set
the estimate of the unknown is unique even though the null
space (Fourier components above the Nyquist frequency) is
not zero.

(21)

(19)m= 1, ... ,N,

N

sex, y) == 2: an<l>n(x, y),
n = 1

where <l>m(x, y) is a 2-D function or "beam" offinite support
centered along the raypath and n is the support of Sex, y).
The functions <l>m(x, y) can be interpreted as the wavepaths
introduced by Woodward (1989).

With the forward modeling equation written in this way,
the estimation of the slowness from the traveltimes can be
seen as a reconstruction problem in a Hilbert space where
the inner product is defined by equation (20). According to
equation (7), the minimum norm estimate of the slowness
Sex, y) is

where df m is the incremental distance along the raypath f m .

In general, the raypath depends on the slowness distribution.
For simplicity, we assume that the variations in the slowness
are just a few percent. Then we can safely consider the
raypaths as straight lines. (The general case will be discussed
later.)

Although the expression (19) simplifies the mathematics
considerably, it fails to convey the fact that the traveltimes
between two points are affected by velocities in the region
called the Fresnel zone, which is infinitely narrow only when
the wavelength>. is infinitely small, >. ~ 0 (Nolet, 1987). To
account for the finiteness of this effect, the traveltime
between two points can be better described by the equation

where N is the number of traveltimes.
We can transform equation (19) into a 2-D integral of the

form of equation (20), if we describe the raypath with a 2-D
delta function 0m(x, y). However, the problem of recon­
struction of the slowness from such an expression cannot be
seen as a reconstruction problem in a Hilbert space because
the inner product (o;(x, y), o;(x, y» is not defined.

From equation (8), the coefficients an can be calculated
through the system of equations

{
area of the beampath if m = n

= area of the intersection if m 1- n. (25)

A "natural pixel" for a single ray is shown in Figure 2.
Even when the rays curve or when reflections are included,
the natural pixels are strips centered on the raypath. The
height of the strips may vary; for example, they can have a

(<l>n(x, y), <l>m(x, y» = L<l>n(x, Y)<l>m(x, y) dx dy, (23)

In contrast with the traditional reconstruction using
square pixels as the basis functions [equation (18)], the
reconstruction described above is based on a discretization
of the model along the beampaths. In the previous example,

N

tm = 2: an(<l>n(x, y), <l>m(x, y»
n = 1

where

m = 1, ... , N, (22) raypath

height

hx

FIG. 2. Natural pixel as described in equation (24).
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Tomographic Traveltime Inversion 639

FIG. 3. Natural pixels in a constant slowness medium for a
crosswell configuration of five sources and five receivers.

(26)t =15(x, y) de,

Iterative inversion

is
The tra veltime along a ray in a medium of slowness 5(x. y)

the numerical accuracy in the summation (21), but this fact
does not change the number of model parameters.

The coefficients a /I in equation (21) represent all the
information gained from the measurements, which can be
seen easily when only one measurement is available. In this
case , the coefficient a1 is proportional to the average slow­
ness in the region of the beam path. If we want to invert that
measurement using square pixels, the problem in general will
be underdetermined or . in the best case (using only one pixel
in the inversion), we can obtain information not present in
the data, e.g. , information outside the spatial support of the
observation.

Each traveltime measurement does not contain informa­
tion about variations in the slowness along the beampath.
The variations are averaged into a single number, the trav­
eltime, and it is only the combination of them overlapping
beampaths that gives information about these variations.
This basic fact is contradicted when the model is discretized
into square pixels that potentially introduce variations along
each beam path and demand from the data more information
than they contain. Introducing more degrees of freedom into
the problem might be convenient if there is enough informa­
tion to resolve all of them. The extra information needed to
solve the problem is introduced in the form of constraints,
some of them resulting from independent data and others are
simply "reasonable" constraints . Smoothness is an example
of a reasonable con straint that helps solve the problem of the
extra information needed. However, it is not clear how the
solution may depend upon the various ways of introducing
the smoothness (Claerbout, 1976) or other reasonable con­
straints that do not come from independent observations.

To this point, the inversion is strictly linear, which means
that the sampling functions do not depend upon the slow­
ness. This is analogous to Fourier reconstruction where the
sampling functions (complex exponentials) do not depend
upon the properties of the unknown. No iterations are
needed after the estimate is found . The situation is different
in tr aveltime tomography where the sampling functions may
strongly depend upon the unknown slowness (the next
section addresses this topic) .

where the traveltimes as well as the raypaths depend upon
the slowness. When the raypaths are straight lines, like in
X-ray tomography, or when the variations in slowness are
small. we can derive 5(x, y ) from the traveltimes using this
expression . In geophysical applications. however , straight
rays are rarel y found , and as a result, the inversion problem
(26) becomes highly nonlinear since the unknown S(x, y) is
also implicitly present in the raypath (Nolet, 1987).

If the medium is perturbed to 5'(x, y) = 5(x, y) + AS(x, y),
the new traveltime calculated along the new raypath f' is

5.000.00

Distance (m)

variable cross-section that gives more weight to the center
than to the sides.

Buonocore et al. (1981) and Buonocore (1981). not work­
ing within the framework of reconstruction in Hilbert
spaces, define an estimator identical to equation (21) and call
it natural pixel decomposition of the two dimensional image,
where the natural pixels are the functions <l>m(x, y) . They
study extensively the properties of such a reconstruction and
the theoretical advantages of it compared with the traditional
reconstruction using square pixels. They show that the
matrix of coefficients (<I> ;(x, Y), <I>/x. y) represent s the
measurement covariance matrix if there is no measurement
noise . If the measurement noise is nonzero but uncorrelated,
only the diagonal elements of the matrix are different from
those of the measurement covariance matrix . According to
Buonocore et al. (1981), square pixels errors are cau sed by
the inaccurate estimation of the measurement covariance
matrix. These errors can be eliminated only if the size of the
pixels could be made infinitely small.

An example of a set of natural pixel s is shown in Figure 3.
for the case of a cro ss-borehole geometry in a medium of
constant slowness . The details in the implementation of the
inversion based on natural pixels are explained in the Ap­
pendix.

The number of cell s in the square-pixel-based inversion is
commonly determined by a tradeoff between the required
resolution and cost of the inversion. With square pixel s we
are forced to establish that compromise because they do not
differentiate between model parameters and display param­
eters , although they have opposite purposes : we want many
display parameters for an accurate representation but , at the
same time, few model parameters for an inexpensive inver­
sion. (An example of this will be explained below .) If we
decide to use any other basis function instead of square
pixels , we alwa ys have to discretize it fine enough to en sure
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640 Michelena and Harris

Using Fermat's principle , it can be shown (Aki and Rich­
ards , 1980) that the difference in traveltime between the two
media is

1::.1m = 1I::.S(x, y)cj>m(X, y) dx dy. (29)

where I::. 1 = t' - 1. The nonlinear problem is then solved as
a sequence of linearized steps that seeks to minimize the
difference between real and calculated traveltimes.

If the perturbations in traveltimes are calculated as inte­
grals along the beampaths, equation (28) becomes

2.00 2.02
O.

100.

200.

300.

•
S......,
-5 400.
c,
<Ll
Cl 500.

600.

700.

800.
O. 800.

inversion produces directly the slowness value in each pixel,
and therefore, reducing the size of the pixels (for better
resolution) increases the number of model parameters and
consequently the size of the system of equations to solve . In
the examples shown, the size of the system of equations
solved is 289 x 1681 (grid size = 41 x 41; Figure 5) and
289 x 25921 (grid size = 161 x 161 ; Figure 6), respectively .

(28)

(27)t' = ( S'(x, y) de'.
Jt'

1::.1 = 1!::.S(x, y) de,

The beampaths are centered in the rays traced in the
unperturbed model. Substituting I::.S(x, y) by Sex, y) in
equation (21) and I::.tm by 1m in equation (22), we can get the
estimate of the slowness perturbation I::.S(x, y) after solving
equation (22). This estimate reproduces the perturbations in
traveltimes; thus, when the problem is linear, it converges in
one iteration, like in Fourier reconstruction problems (see
the examples that follow).

NUMERICAL EXAMPLES
Distance (m)

FIG. 5. Inversion when a grid of 41 x 41 square pixels is
used.

FIG. 4. Slowness perturbation. 17sources are located on the
right-hand side of the model and 17 receivers are located on
the opposite side. The radius of the disc is r = 100 m. The
width of the natural pixels is }..' = 40 m. The vertical
separation between adjacent sources and/or receivers is 50
m.

2.01

Distance (m)

1.99

O.

100.

200.

300.

:§:
-5 400.
c,
<Llc 500.

600.

700.

We will now show synthetic inversion examples compar­
ing natural pixels and square pixels as basis functions. Our
aim is to compare the results of the inversion when both are
used with the same data set. This goal can be achieved with
synthetic data for a cross borehole geometry generated from
the model shown in Figure 4. The example is simplified
considerably by assuming that the slowness contrast be­
tween the circular disc (S = 2.02) and the background (S =
2.00) is 1 percent. Therefore, straight rays adequately de­
scribe the propagation of the energy in the medium.

The data are generated from strip integrals across the
model of Figure 4. The integrals are calculated from the
analytical expressions of the intersection of the strips with
the circle . In this way the numerical errors in the forward
modeled data have been minimized. Two-hundred eighty­
nine traveltimes were computed , which corresponds to the
17 sources and 17 receivers used. Another simplification is
made assuming that the width of the strips }..' = 40 m is the
same during both the forward modeling and the inversion.

When the model is discretized into square pixels, the
estimate of I::.S(x, y) [equation (29)] is obtained after solving
a system of linear equations where the matrix coefficients
represent the area of the intersection of the strip with each
pixel. We solved this system and the one obtained with the
natural pixels [equation (22)] using the LSQR variant of the
conjugate gradient method (Nolet, 1987) that has been
proven to be faster than SIRT methods (Nolet, 1985; Van der
Sluis and Van der Vorst, 1987).

Figures 5 and 6 show the results of the inversion when the
model is discretized with two different pixel sizes . The
starting model has a constant slowness So(x, y) = 2. The

D
ow

nl
oa

de
d 

09
/2

7/
18

 to
 5

0.
20

3.
13

3.
34

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



Tomographic Traveltime Inversion 641

Evidently, the qualit y of the reconstruction and the amount
of information about the model contained in the image
increases with the number of model parameters . Note that
no interpolating or smoothing process has been applied to
the images. The coar se discret ization and the limited view of
the data are the cau ses of the artifacts in Figure 5.

The result of the inversion using natural pixels is shown in
Figure 7 (see the Appendi x for details in the implement a­
tion) . This image is repre sented with a grid identical to the
one used in Figure 6 (161 x 161) and then both results can be

1.99 2.01
O.

100.

200.

300.,.......
5
-5 400.
c..
Il)

Q 500.

600.

700.

800.
O. 800.

Distance (m)

FIG. 6. Inversion when a grid of 161 x 161 square pixels is
used.

compared directl y. The system of equations solved with the
natural pixels is 289 x 289, and these dimen sions are
independent of the level of resolution of the image .

The images look almost identical in terms of resolution.
The artifacts produced by a coarse sampling of the mode l
(Figure 5) have been reduced . The discretization along the
natural pixels does not contribute to eliminate limited view
problem s in the inver sion , since we can see them in both
cases. The main difference between the two solutions is
related with the smoothness of the image . The reconstruc­
tion with the square pixels produces a slightly smoother
image than the recon struction with the natural pixels .

For comparing the result s of the inversion with square and
natural pixels . we plott ed the absolute value of the difference
between the original image (Figure 4) and the inverted one s
(Figures 6 and 7). The results are shown in Figures 8 and 9.
The maximum error obtained with natural pixels is the same
as obtained with square pixels. We expect both images to be
roughly the same since both discretizations minimize the
expression (2). This expression represents the norm of the
null space of the problem f2(X , y) . If we discretize the
original image very den sely (grid size = 889 x 889), we can
calculate this norm in both reconstructions. For the square
pixels the result is lifi ll = 2.383 and for the natural pixels
Ilh ll = 2.397. The norm of the null space for the inversion
with less square pixels (Figure 5) is Ilh ll = 2.471. This means
that the norm of the null space is reduced by sampling the
image more densely in the square-pixels-based inversion .

The noisy appearance of the inversion with natural pixel
recon struction can be reduced by sampling the strips more
densely. The result is shown in Figure 10, where a grid of 40I
x 401 points has been used . The norm of the null space of
this image is 11/ 211= 2.394. The extra computations necessary
for producing the image from the digitized beampaths [equa-

1.99 2.01 0.00 0.02

O. O.

100. 100.

200. 200.

300. 300.

E ]:
'-'

-5 400. -5 400.

c.. c..
Il) Il)

0 500. Q 500.

600. 600.

700. 700.

800. 800.

O. 800. O. 800.

Distance (m)

FIG. 7. Inversion when the model is discretized in natural
pixels. The image is displayed in a grid of 161 x 161 cells.

Distance (m)

FIG. 8. Error in the inversion with square pixels. This image
represents the absolute value of the difference between the
original model (Figure 4) and the inverted one (Figure 6).
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642 Michelena and Harris

tion (21)] are negligible compared with the computation of
the matrix elements and the solution of the system of
equations for the coefficients of the square pixels. Once the
coefficients an for the natural pixels are obtained, the image
can be displayed using different grid sizes without having to
build a new matrix and solve the system of equations again.

We can also compare the mean absolute error in both
images from the following expression:

0.00 0.02
O.

100.

200.

300.

E........
.s 400.
0-
Cl)

Cl 500.

600.

700.

800.
O. 800.

Dista nce (m)

FIG. 9. Error in the inversion using natural pixels. This image
represents the absolute value of the difference between the
original model (Figure 4) and the inverted one (Figure 7).

1 N
error = - 2: I(original pixel), - (reconstructed pixelj.],

N;=I

(30)

where N in this case represents the total number of cells.
For the natural pixels as well as for the square pixels, the

mean error is 2.0 10-3
. However, remember that although

the quality of the inversion is basically the same for both
basis functions, the computational effort necessary in the
whole process is roughly two orders of magnitude smaller
when natural pixels are used and both images are densely
sampled with the same number of points.

The sizes of the matrices involved in the previous inver­
sions are 289 x 1681 and 289 x 25921 for the square pixels
and 289 x 289 for the natural pixels. The first and the last
matrices allow the computation of the singular values in a
reasonable time. The results are shown in Figure 11, where
the curve labeled 3 (upper curve) refers to the natural pixels
discretization and the curve 1 to the 289 x 1681 matrix
obtained when square pixels are used. Curve 2 represents
the singular values of the matrix obtained when the model is
discretized in a grid of 17 x 17 square pixels (size of the
matrix 289 x 289, the same as the matrix in curve 3). The
matrix computed as intersections of natural pixels (curve 3)
is significantly better conditioned than the other two matri­
ces. Sampling the image more densely also makes the square
pixel matrices (curves 1 and 2) better conditioned.

CONCLUSIONS

We have shown that the natural pixels provide an efficient
way of discretizing the slowness model in the problem of
traveltime tomographic inversion. In the examples studied,
images of similar quality were obtained using natural pixels
compared with the traditional reconstruction of square pix­
els. The main advantage of the natural pixels is that the
number of model parameters needed is two orders of mag­
nitude smaller, which means a proportional reduction on the

\,99 2.02

Distance (m)
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Ie - OS

1e-06 a
100

singulor

FIG. 10. Inversion when the model is discretized in natural
pixels. The image is displayed in a grid of 401 x 401 cells.

FIG. II. Singular value decomposition for the matrices
obtained with different discretizations: (1) 41 x 41 square
pixels, (2) 17 x 17 square pixels, and (3) natural pixels.
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Tomographic Traveltime Inversion 643

computational effort. Besides that, the inversion with the
natural pixels is better conditioned than the inversion with
square pixels when comparable numbers of parameters are
used.

To obtain the estimate Sex, y) with natural pixels, two
different minimization problems are involved. The first one
is implied by equation (9), where the function to be mini­
mized is the error between the true model and the estimated
one. The second minimization problem is related to the
solution of the system of equations (22), where the function
to be minimized is the error between observed and calcu­
lated data. We have shown the importance of the first
minimization in terms of the computational effort required to
obtain the final estimate.

The number of natural pixels equals the number of data
points, which means that the number of model parameters in
the inversion remains constant for a fixed amount of data,
regardless of the spatial dimensions of the problem or the
resolution of the display. Consequently, the natural pixels
provide a direct procedure for inversion in three dimensions.
problems that can be computationally impossible to attack if
the model is described with orthogonal 3-D pixels (boxes).

The discretization of the model along the natural pixels
will change in general from one experiment to another and
from one iteration to another within the same inversion,
since the natural pixels may change in each of these situa­
tions. In this sense, we can say that the discretization is
flexible because it depends upon the given data. However,
some flexibility is lost if we want to introduce information
not described by natural pixels such as known boundaries or
slowness in some areas.

More research has to be done to determine the most
appropriate function that approximates the beampaths (in­
stead of the natural pixels described herein), depending upon
the characteristics of the data set. Woodward (1989) gives
important indications about this problem describing the
beampaths (wavepaths) as elliptical, multiple-Fresnel-zone
patterns, analogous to the migration ellipses. The width of
her wavepaths is inversely proportional to the bandwidth
and it is independent on the central frequency. Woodward's
wavepaths are calculated using finite differences, which

might not be convenient when large data sets are inverted
with our method of discretization.
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APPENDIX

IMPLEMENTATION OF THE INVERSION USING NATURAL PIXELS (IN TWO DIMENSIONS)

The step-by-step computational procedure for iterative
traveltime inversion using natural pixels is summarized in
this appendix.

Step 1: Calculate the synthetic traveltimes in the given
(initial) slowness model using equation (20) and the definition
of natural pixels. This equation is a surface integral (in 2-D).
Surface integrals are difficult to evaluate especially if there is
no analytical expression for the integrand. However, once a
ray has been traced (Figure A-I), this integral can be
evaluated simply and accurately with the expression

Strictly speaking, S, is the average slowness in the subarea
£lim/I.' of the natural pixel m of width r..' and ray segment

(A-I)
FIG. A-I. Detail of a natural pixel. The traveltime along a
natural pixel is equal to the sum of products /11; x (slow­
nessu, where (slowness); can be approximated by the aver­
age slowness perpendicular to the ray segment.
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644 Michelena and Harris

length ilem . However, S, can be approximated by the
average slowness across the natural pixel at any position
along the ray segment. N, is the total number of segments
for the mth ray. m

It is clear that when the model is homogeneous, the
traveltimes calculated in this fashion are equal to those
calculated conventionally as line integrals across the model.
Differences arise when the model is heterogeneous, because
the traveltimes calculated with the natural pixels also "see"
the neighborhood of the ray.

Step 2: Compute the traveltime differences ill; of the real
minus calculated traveltimes.

Step 3: Calculate the matrix coefficients using expression
(25). Remember that the diagonal terms of the matrix repre­
sent the area of the support of each natural pixel, whereas
the off diagonal terms represent the area of intersection
between them. Therefore, the diagonal terms are simply

Step 4: Solve the system of equations

All A2I ANI al

A 21 An A N 2

A, 2 (A-5)

ANI A N 2 ANN aN

Ai; = A'e;, (A-2)

I:1tN

This matrix is sparse and symmetric, which helps to reduce
the space needed for storage and to simplify the matrix­
vector multiplications if the system of equations is solved
using conjugate gradients.

Step 5: Computel:1S by substituting the resultant an into
equation (21) using the definition of natural pixels. Each
natural pixel is finely discretized, the corresponding value of
an/A' is assigned to each one, and the sum of all of them is
performed.

Step 6: For iterative inversion, update the model.

FIG. A-2. Area of intersection between two different natural
pixels. (a) The intersection is completely within the ~odel.

(b) and (c) The area of intersection is partially outside the
model. Note that in (b) X2 refers to the lower left corner of
the parallelogram, whereas in (c) X2 refers to the upper left
corner. For this reason, the formula for calculating the area
varies slightly from one case to the other. In all tht; cas~s

represented in this figure, the width of the natural pixels IS

A" X and X are the horizontal coordinates of the wells.
'WI W2

where £; is the total length of the ray i. Although the off
diagonal terms are more difficult to compute, the computa­
tion can be simplified if we assume that in the region of
intersection the natural pixels can be approximated by
strips, as shown in Figure A-2a. The area of intersection is

Aij = A,2/sin aij aij =f 0; (A-3)

aij is the angle between rays i andj at the intersection point.
This angle is zero either when i = j (diagonal terms) or when
the rays i and j are locally parallel at the intersection. In
these two cases the formula (A-3) is not valid. This formula
is not valid either when the area of intersection lies partially
outside the support of the model (for instance, in the
crosshole geometry when the intersection is close to the
wells, as shown in Figures A-2b and A-2c). In such situa­
tions, the area can be calculated starting from the general
expression

Aij = (a; - aj)(-xf + x~ +xi - xl) + (bl; - b2) ( X2 ~ xd

+ (blj - b2;) ( X4 - X3) + (X3 - x2)Dij

a; > aj, b li > b2 i , blj > b2j , (A-4)

where Dij = (b li - b2i ) for the situation represented in
Figure A-2b and Dij = (b lj - b2) for the situation shown in
Figure A-2c. The numbers Xl> X2, X3' and X4 represent the
horizontal coordinates of the intersection points between the
different borders of the natural pixels. To use this formula to
calculate, for example, the area in Figure A-2c (shaded
region), it is necessary to substitute X3 and X4 (points outside
the model) by Xw (boundary of the model at the intersection
region). Similar kinds of substitutions can be made in other
situations where the boundary of the model crosses the
intersection area.

Well2

"'...

,
X2

,,,,,
,,.

X4
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