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Summary

In this paper, we introduce a fast and simple method to
estimate petrophysical properties from well information
and two dimensional seismic attributes. The method gen-
eralizes the well known linear regression techniques where
the reservoir properties are obtained as linear combina-
tion of seismic attributes. The estimates are obtained
after solving a nonlinear optimization problem that at-
tempts to: a) preserve seismic-property correlations esti-
mated at wells locations; b) minimize the di�erence be-
tween estimated and measured properties; c) minimize
the di�erence between real and estimated correlations
among di�erent properties measured at the same loca-
tions; d) minimize crossvalidation errors. A genetic algo-
rithm is used to solve this nonlinear optimization prob-
lem. The method may uses all selected seismic attributes
and all measured properties simultaneously. Final petro-
physical property estimates are a linear combination of or-
thonormal seismic attributes that form a basis for the vec-
tor space of the original attributes extracted from the seis-
mic data. By using a synthetic data set, we show petro-
physical estimates obtained by using the new method
yield mean crossvalidation errors of 10% and the esti-
mated property maps are comparable to those obtained
by using a conventional geostatistical technique such as
colocated cokriging.

Introduction

The estimation of petrophysical properties from measure-
ments at selected well locations and low resolution seis-
mic data is a problem that geologists, engineers, and geo-
physicists face everyday when characterizing the hetero-
geneities of a reservoir. Since the classic paper of Doyen
(1988), geostatistical techniques have become the ulti-
mate tool to solve this problem. These powerful tech-
niques provide not only maps of estimates of reservoir
properties but also estimates of the uncertainties in such
maps. Unfortunately, as Hirsche and Davis (1997) point
out, the use of geostatistics is often restricted to a few
\experts" that master all the details in the proper use of
the tools required to perform the estimations.

With the use of modern seismic interpretation systems,
the extraction of seismic attributes from 3D seismic data
is straightforward. Once seismic attributes have been ex-
tracted and petrophysical measurements have been incor-
porated into the data bases, interpreters tend to use con-
ventional linear regression methods rather than geostatis-
tical methods even though linear regression methods are
known to have serious limitations. In many cases, petro-

physical estimates from linear regressions become the �-
nal estimates that are used to make decisions about the
reservoir, even thought they are meant to be fast, �rst
order estimates that will be eventually replaced by more
accurate geostatistical estimates.

We present in this paper a fast and simple method that
overcome some of the limitations of conventional linear re-
gression methods by producing estimates of petrophysical
properties that attempt to honor all well information, pre-
serve seismic-property correlations, preserve correlations
between di�erent properties measured in the same well
locations, and minimize crossvalidation errors.

Even though the method relies on good estimates of the
correlation between the seismic attributes and the petro-
physical properties we want to estimate, it does not re-
quire such correlations to be necessarily high.

We start by introducing the basic theory of property esti-
mation in Hilbert spaces. Then, we show how a property
can be estimated as a linear combination of orthonormal
seismic attributes weighted by the correlation coe�cient
between them and the given property. Since this esti-
mate does not honor well information, we show how to
modify it to honor such information as closely as possi-
ble. The modi�cation consists of the addition of a small
perturbation to the correlation coe�cient. Such pertur-
bation is estimated by solving a nonlinear optimization
problem. Finally, by using a synthetic data set, we show
the method yields reliable estimates that are comparable
to those obtained by using a conventional geostatistical
technique such as colocated cokriging.

Estimation in Hilbert spaces

If we want to use seismic attributes to estimate a petro-
physical property Pj in areas of the reservoir were no in-
formation about such property is available, we can assume
that both Pj(x; y) and the seismic attributes are functions
that belong to a Hilbert space H. If the vector subspace
of the property is called P , and the vector subspace of the
seismic attributes is called EA, we can always express the
vector subspace P of the property as the sum of EA plus
another subspace E?A orthogonal to EA (the orthogonal
complement), as follows (Michelena and Harris, 1991):

P = EA �E?A: (1)

From the projection theorem (Stackgold, 1979), we can
always decompose the property Pj(x; y) into g(x; y) +
f(x; y), where g(x; y) belongs to EA and f(x; y) belongs
to E?A. If the vector subspace of the seismic attributes

has dimension M and the functions fAig
M

i=1
form a basis
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Estimation of petrophysical properties

for this subspace, we can write Pj(x; y) as

Pj(x; y) =

MX
i=1

!iAi(x; y) + f(x; y): (2)

The �rst term of equation 2 represents the projection of
the property in the basis of the seismic attributes. The or-
thogonal complement f(x; y) contains information about
the property Pj(x; y) that is not captured by the seismic
data. The values of the weights wi can be easily obtained
by minimizing the norm of the orthogonal complement
f(x; y) as follows:

min kf(x; y)k
2

= min






Pj(x; y)�
MX
i=1

!iAi(x; y)







2

: (3)

The solutions wi of equation 3 are obtained after solving
a linear system of equations whose matrix elements are
the inner products among the di�erent elements of the
basis of the attributes subspace. If we assume that such
basis function is orthogonal, the matrix becomes diago-
nal (Stackgold, 1979) and the estimate P �j (x; y) of the
property Pj(x; y) can be expressed as

P
�

j (x; y) =

MX
i=1

hPj ; AiiAi(x; y); (4)

where hPj ; Aii is the inner product of the petrophysical
property function and the seismic attribute Ai(x; y). No-
tice that the estimate P �j (x; y) given by equation 4 still
depends on the unknown function Pj(x; y) at every point
in the area of interest. However, if we assume stationar-
ity, we can estimate the inner product hPj ; Aii from the
expression

hPj ; Aii � rij
p
hPj ; Pji hAi; Aii; (5)

where rij is an estimate of the correlation coe�cient be-
tween Pj(x; y) and Ai(x; y) that is assumed to be equal to
the correlation coe�cient between Pj(x; y) and the seis-
mic attributes Ai(x; y) measured at the well locations.
Equation 5 assumes that both Pj(x; y) and Ai(x; y) have
all zero mean. This equation can be further simpli�ed
if we normalize both the property and the seismic at-
tributes (hPj ; Pji = hAi; Aii = 1), resulting the following
expression for the estimate P �j (x; y) of the petrophysical
property Pj(x; y):

P
�

j (x; y) � mj

MX
i=1

rijAi(x; y) + bj : (6)

The variables mj and bj are scaling and translation con-
stants used to preserve the original range of variation of
the function Pj(x; y) measured at the wells.

For every point (x; y), equation 6 provides an estimate
of the property Pj that is a linear combination of or-
thonormal seismic attributes weighted by the correlation

coe�cient. Attributes with high correlation coe�cient
contribute more to the estimate than attributes with low
correlation coe�cient. This estimate preserves the cor-
relation between the seismic data and the petrophysical
property but has the disadvantage that does not make
any attempt to honor such properties at well locations.
Next section explains how to deal with this issue.

Nonlinear optimization problem

To overcome the limitation of the estimate P �j not hon-
oring the values of the property at the wells, we perturb
each correlation coe�cient rij by adding a small parame-
ters eij such that the seismic-property correlation is still
preserved, within a certain small error, and the well infor-
mation is honored as closely as possible. The expression
for the new estimate is

P
�

j (x; y) � mj

MX
i=1

(rij + eij)Ai(x; y) + bj : (7)

The parameters eij can be obtained after minimizing
the following objective function that includes information
about more than one petrophysical property and other re-
quirements besides honoring the well information:

min

8>>>>>><
>>>>>>:

�
LP
j=1

NP
k=1

��Pj(xk; yk)� P �j (xk; yk)
��+

�
LP
j=1

LP
h=j

��hPj ; Phi � 
P �j ; P �h
���+



LP
j=1

MP
i=1

jeij j

9>>>>>>=
>>>>>>;

: (8)

In the previous equation, L is the number of petrophysical
properties we want to estimate and N is the number of
wells where those properties have been measured. The
coordinates (xk; yk) indicate the positions of the wells.

The objective function 8 is nonlinear in the perturbations
eij . We �nd the set of perturbations that minimize this
nonlinear equation by using a genetic algorithm. Genetic
algorithms are easy to use, require only evaluations of
the objective function, attempt to �nd the global mini-
mum, and provide solutions that are independent on the
choice of the initial model (Goldberg, 1989). Since the
sum (rij + eij) is assumed to be a correlation coe�cient,
it is constrained to belong to the interval [�1, 1].

The �rst term in the objective function tries to minimize
the di�erence between properties Pj(xk; yk) measured at
the wells and properties P �j (xk; yk) estimated at the same
locations; the second term tries to preserve the corre-
lations between properties measured at the wells where
more than one property is available; the third term forces
eij to be small such that the seismic-property correlations
are preserved as closely as possible across the area of in-
terest. In essence, the addition of the small parameter eij
to the correlation coe�cients rij acknowledges the pres-
ence of errors in such coe�cients and tries to compensate

SEG Int'l Exposition and Annual Meeting  *  San Antonio, Texas  *  September 9-14, 2001

D
ow

nl
oa

de
d 

09
/2

7/
18

 to
 5

0.
20

3.
13

3.
34

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



Estimation of petrophysical properties

these errors by including additional well information from
one or more properties.

If the weighting factors �, �, and 
 are set before solving
the optimization problem 8, their relative sizes will deter-
mine the relative contributions of the di�erent terms in
the �nal estimate P �j (x; y). If the second term is included
in the optimization problem (i.e. � 6= 0), all properties
are estimated simultaneously. Otherwise, the estimation
of one property is performed independently of the rest. If
the coe�cients � and 
 are both zero, the estimate will
attempt to honor only the well information. The parame-
ters �, �, and 
 are all positive and satisfy the constraint
�+ � + 
 = 1

As we will show in the examples below, the weighting fac-
tors can be estimated such that the mean crossvalidation
error is minimum. The search of the optimum weighting
factors can be seen as an optimization problem by itself
that we can be solved e�ciently by using gradient based
methods.

Synthetic examples

To test how the algorithm performs when estimating a
single property (� = 0) from well information and seis-
mic attributes, we used a synthetic data set that con-
sisted of the map of the property (Figure 1), the value of
such property at 42 locations (which is assumed to be the
\given" well information), and 27 attributes generated by
doing a non conditional simulation turning band that pre-
served the variogram of the property. As Figure 1 shows,
the property presents North-South alignments with lower
values towards the North.

From the original 27 attributes we generated, we ended
up using only six for the estimation. We did not used
those whose correlation with the well information was less
than 0.1, those whose trend was not the expected one
(which means that, in practice, we should examine all
attributes and keep only those that make more sense from
the geological point of view), and those whose correlation
with any other attribute was above 0.9. The remaining
attributes were transformed into orthonormal vector set
by using the process of Gram-Schmidt orthogonalization.

The precision selected for the parameters eij was 0.0002,
a population of 50 individuals was used, and the itera-
tions of the genetic algorithm were large enough (typically
4000) to assure convergence was reached.

Figure 2 shows the map of the estimated property using
all 42 wells. The general trend of lower values towards
the North is as expected from Figure 1 (the \real" prop-
erty). The correlation between real and estimated prop-
erty maps is 0.64 and the mean relative error is 8% at
the well location. Figure 3 shows the absolute relative
error between real and estimated maps. Ideally, this kind
of map should look similar everywhere, which means the
algorithm performs similarly for di�erent locations and
di�erent property values. However, we see higher prop-
erty values to the South are estimated more accurately

than lower property values to the North. The reasons for
these systematic variations in the estimation errors are
not clear yet.

Figure 4 shows the crossvalidation crossplot obtained for
the value of � (0.95) that minimizes the mean crossvali-
dation error. Property values at well locations estimated
without including such information explicitly in the op-
timization problem are estimated with a mean error of
10%.

Figure 5 shows a map estimated using colocated cokrig-
ing with the attribute that showed the highest correla-
tion (0.8) with the petrophysical property at the 42 wells.
Since the seismic-property correlation at the wells is so
high in this case, the �nal property estimate shown in
Figure 6 is almost identical to the attribute map that was
used for the cokriging. In this case, the correlation be-
tween the real map (Figure 1) and the map estimated by
using cokriging is 0.56.

When comparing Figures 2 and 6, we observe the corre-
lations between real and estimated maps is higher for the
map of Figure 2 obtained by using the procedure proposed
in this paper. Therefore, at least for this particular exam-
ple, property estimates obtained after minimizing expres-
sion 8 are at least comparable to estimates obtained by
using geostatistical techniques in the way they are most
commonly applied in the industry. However, we must
keep in mind that property estimates obtained by using
cokriging may still be improved if we include more at-
tributes in the estimation procedure. In our example, if
we wanted to perform cokriging estimation using the same
6 attributes we used to generate Figure 2, we needed to
generate 7 autovariogram models 21 crossvariogram mod-
els. Such task was beyond the scope of this paper.

Discussion and �nal remarks

We have presented a new method to estimate petrophys-
ical properties using seismic attributes and well informa-
tion that attempts to honor the given well information,
seismic-property correlations, property-property correla-
tions (in case of more than one petrophysical property),
and minimizes crossvalidation errors. The estimate of
the petrophysical property is a linear combination of or-
thonormal seismic attributes.

Even though the results presented in this paper with syn-
thetic data are encouraging, there are still many issues
related to the new method that need more research. The
selection of the proper attributes is a key issue. Even if
the method may include any attribute in the estimate,
we should be careful in understanding which of them are
more related to the property we want to estimate to make
sure we use them. Including attributes that have negligi-
ble correlation with the property, or behave in a way that
is against our geological intuition about the study area,
may prevent us to obtain good estimates. The relation
between number of attributes to use and the number of
wells available requires also further attention.
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Estimation of petrophysical properties

As with other estimation methods, this one may be in
trouble when the property we want to estimate is non
stationary. In may also present di�culties when trying
to estimate abrupt changes in the property whose seismic
expression is smoother. The method provides no esti-
mates of uncertainty. More research needs to be done to
understand and solve all these issues.
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Fig. 1: Original map of the property
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Fig. 2: Estimated property map using the method proposed in
this paper. The correlation coe�cient between this map and
Fig. 1 is 0.65
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Fig. 3: Absolute relative error of the di�erence between original
and estimated map
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Fig. 4: Crossvalidation error. The mean crossvalidation error
is 10 %
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Fig. 5: Estimated map using colocated cokriging. The corre-
lation coe�cient between this map and Fig. 1 is 0.56
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