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Crossplots are commonly used in the geosciences to gain 
qualitative insight about relationships between different 

variables, typically three (for two-dimensional colored 
crossplots). On rare occasions, the relationships among four 
variables are explored by using three-dimensional colored 
crossplots. The variable used to color the crossplot is usually 
related to the property of interest, sand or pay for instance. 
In these cases, crossplots can be used in a quantitative sense 
by selecting (drawing) a region in the crossplot where most of 
the property of interest “lives.” Drawing a polygon in a 2D 
crossplot to separate “good” from “bad” areas is the extension 
to 2D of simple cutoffs commonly applied to 1D well-log 
data to separate scenarios of interest. One drawback of this 
approach is that it works best only when there is no overlap 
between the region occupied by the property of interest and 
the region occupied by the background. Another drawback 
is that it is difficult to extend to three-dimensional crossplots 
and impossible to apply for dimensions higher than three.

In this paper, we propose a simple method to overcome 
these difficulties for extracting quantitative information from 
crossplots, and estimate facies probabilities based on joint sta-
tistical analysis of multiple seismic attributes and log-scale fa-
cies flags. Other methods to estimate facies probabilities have 
been proposed before. Gallop (2006) and Ng et al. (2008) de-
scribe different continuous approaches using well data to esti-
mate conditional probability density functions and then apply 
Bayes’s formula to refine prior facies probability volumes. Both 
approaches are computationally intensive and require various 
normality assumptions (in particular, Gaussian distribution of 
data noise). Stright et al. (2009) give a thorough discussion of 
support issues and use a crossplotting approach similar to the 
one presented here but with a different way of handling scal-
ing. In these approaches, however, the selection of the proper 
rock physics model is a crucial step to establish a link between 
the inverted seismic attributes world and the rock properties 
world. The validity of the results will depend to a large extent 
on the adequacy of the rock physics model selected.

Because crossplots of seismic-derived attributes are at the 
heart of our method to estimate probabilities, we will start 
by revisiting the use of crossplots for facies/lithology qualita-
tive classification. After careful petrophysics and rock physics 
diagnostics, log-scale facies flags related to thick sand bod-
ies are created. These flags are then used to color crossplots 
of seismic-scale attributes derived from AVO inversion of PP 
data (VP, VS, and density) and inversion of poststack fast and 
slow PS components of a 3C-3D survey. We show that by 
jointly using these five seismic attributes and facies flags (like 
a colored five-dimensional crossplot), we can estimate the 
probability of thick sand bodies much better than when we 
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crossplot two attributes at a time. Unlike commonly used ap-
proaches to map facies or lithologies from seismic data based 
on selecting regions in seismic-attribute crossplots, our ap-
proach accounts properly for overlap among different facies 
and quantifies the probability of their occurrence. We apply 
this method to help the characterization of a typical tight gas 
reservoir, the Mesaverde Group at Mamm Creek Field, in 
Colorado’s Piceance Basin in the United States.

Crossplotting revisited
Typical colored crossplots range from perfect separation to 
complete overlap of the target scenario with respect to the 
background. Intermediate cases include scenarios that range 
from clustered response with some overlap to clustered re-
sponse with complete overlap. Figure 1 shows an example of 
the latter scenario which occurs often in practical situations. 
For this reason, we will examine it in more detail. Let’s as-
sume that the target (red dots) in Figure 1 corresponds to gas-
saturated sandstones embedded in a wet-shale background 
(blue dots). Even in this case, where there is a complete over-
lap of red and blue dots, the likelihood of finding red dots is 
larger for the attribute values where the target cluster “lives” 
(right side of the crossplot).

The method we use in this paper tries to account for clus-
tering of the response of the desired property in multidimen-
sional crossplots of seismic attributes, going beyond drawing 
polygons or using cutoffs to separate regions of interest. It 
quantifies the statistical differences in the responses of the 

Figure 1. Probability estimations from crossplots. A rectangular grid 
is superimposed on the crossplot and individual probabilities of the 
different scenarios (red and blue dots) are calculated for each rectangle. 
These probabilities are then assigned throughout the whole seismic 
volume where attributes were extracted.
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different scenarios. As we will show in the next section, our 
approach is completely data-driven, because it doesn’t require 
any model to relate the property of interest with the seismic 
attributes. The next section shows the details of the method 
starting from basic probability definitions.

Probabilities from crossplots
We use conditional probabilities and the correspondence of 
the different log-scale scenarios with seismic-scale attributes 
sampled at well locations to estimate the likelihood of the 
target scenario away from wells. Similar results can be ob-
tained using Bayes’s formula to estimate the probability if a 
prior estimate of probability is known.

A conditional probability estimates the likelihood of an 
event of interest given that a conditioning event is known to 
occur:

       

Here, P(S) is the probability of observing the target sce-
nario S (e.g., facies flag related to thick sand bodies), and A is 
a conditioning event providing extra information (in our case, 
inverted seismic attributes).

Conditional probabilities are well suited to this applica-
tion because they do not require that any particular form of 
relationship, or even any relationship at all, exists between 
scenarios (facies) and conditioning events (seismic attributes). 
Additionally, no assumptions are made about probability dis-
tributions or independence.

For the case of two attributes shown in Figure 1, we define 
conditioning events by superimposing an M × N grid on the 
attribute crossplot; each rectangular cell in the grid defines 
a conditioning event. These events should capture any rela-
tionship between facies and seismic attributes. This approach 
easily generalizes to cases where more than two attributes are 
believed to be related to the target scenario. Examples of us-
ing two, three, and five attributes at a time are shown later in 
this paper.

Selection of M and N for defining conditioning events in-
volves a tradeoff and should be done on a case-by-case basis. 
Large M and N (small rectangles) will tend to group closely 
related samples and give stronger separation, but grid cells 
that are too small could mean sensitivity to noise and other 
errors. On the other hand, small M and N (large rectangles) 
will group more loosely related samples and give weaker sepa-
ration, but larger grid cells mean more stable, but lower-reso-
lution, estimates.

As shown in Figure 1, the probability is the ratio of the 
number of points in a grid cell related to the target scenario 
over the total number of points in the same cell. In this sense, 
we can interpret the probabilities as a seismic-scale estimate 
of net-to-gross for a given set of attribute ranges. The total 
number of points per cell provides an estimate of the reliabil-
ity of the probabilities and can be used to assign confidence 
estimates to the interpretation of the probability results.

The next section shows an example of the application of 
this method.

Field data example: Mamm Creek Field
Mamm Creek Field is in the Piceance Basin of northwestern 
Colorado in the United States. Most of the gas production in 
Mamm Creek comes from fluvial tight sands (~5000 ft deep) 
in the Williams Fork Formation, but marine sands in the 
Corcoran, Cozzette, and Rollins members (~7000 ft deep) 
of the Iles Formation and the middle and upper sands of 
the Williams Fork Formation also contribute to production 
(Scheevel and Cumella, 2009). Mapping the distribution of 
sands is critical for early effective development of the field 
but, unfortunately, seismic data have not been used exten-
sively for this purpose because elastic properties of sands and 
shales show large overlap in rock physics diagnostics. Estima-
tion of sand distribution in the upper fluvial tight sands is 
much more challenging than in the lower marine sands be-
cause fluvial sands are thinner and more discontinuous than 
thicker, regionally continuous marine sands. The method 
presented in this paper was applied separately to both fluvial 
and marine intervals.

The data set used for this study consisted of log data from 
102 wells, a 3D prestack compressional seismic data set and 
two PS (fast and slow) stacked volumes from a 3D converted-
wave multicomponent data set. The PS data set was not ac-
quired at the same time as the 3D compressional data. Gam-
ma-ray, neutron, and density logs are available in most wells. 
Sonic data were available at three wells only; one well had a 
dipole sonic and another well had an oriented cross-dipole 
sonic. Figure 2 shows the well locations within the study area 
of 2.5 square miles.

A summary of our workflow follows:

1) Petrophysical analysis and generation of facies flags based 
on lithology and thickness. Only sand intervals with more 
than 6% effective porosity and thickness greater than 
10–15 ft were kept for seismic calibration. This approach 
acknowledges the difficulty of detecting sand bodies of less 
than 10 ft with seismic data and, therefore, no attempt is 
made to map them.

2) Log-scale analysis of relationships between petrophysical 
properties of target facies and seismic attributes derived 
from AVO inversion and inversion of PS stacked data. VP, 
VS, density, and shear impedances derived from PS data 
were the key attributes in this analysis. Crossplots of these 
different attributes derived from log data are shown in Fig-
ure 3. These crossplots at log scale are used only to make 
sure similar crossplots at seismic scale show the expected 
qualitative behaviors.

3) Horizon interpretation from PP and PS data. PS fast and 
slow volumes were interpreted for the same horizons as the 
ones interpreted in the 3D compressional-wave data. Con-
sistency between the interpretations of PP and PS data was 
achieved by looking at not only the character of the seis-
mic events but also the well ties in PP and PS time using 
density, sonic, and shear logs.

4) Three-term AVO inversion of PP prestack gathers and 
poststack inversion of 3D PS stacked data. The results 
of this step are volumes of VP, VS, density (rho), pseudo 
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S-impedance fast (pSIf ) and pseudo 
S-impedance slow (pSIs). Pseudo S-
impedances from PS stacked data 
were estimated using the algorithm 
described in Guliyev and Michelena 
(2009). Since the study area is small, 
only one well was used to build the 
background model in each of these in-
versions. Due to the lack of measured 
compressional and shear logs in most 
wells, seismic well ties and quality 
control of inverted acoustic imped-
ance, shear impedance, and pseudo S-
impedances relied on synthetic P and 
S logs generated from existing density, 
gamma-ray, and neutron logs using 
artificial neural networks. These syn-
thetic logs were considered adequate 
for these purposes and were not used 
for any other quantitative analysis. Re-
liability of density inversion, however, 

Figure 2. Well locations within the 
study area of 2.5 square miles in sections 
20, 21, and 28 of Mamm Creek Field. 
Bottom-hole locations are indicated by 
yellow circles and well trajectories are 
shown in blue.

Figure 3. Crossplots of log-scale attributes at one well location color-coded by facies flags at log scale. Sand response is clearly clustered in all 
crossplots but elastic properties of sands show a total overlap with the properties of the background rocks (mostly shales). Red arrows indicate 
the area of the crossplot where the sands tend to cluster with respect to the background. Departures from the 45˚ line in the lower right crossplot 
of impedances from PS fast versus PS slow (pSI fast and pSI slow, respectively) data indicate azimuthal anisotropy. Thick sand facies tend to 
be more anisotropic than the sourrouding shales, in particular in the marine interval. These crossplots give a clear idea of what to expect when 
crossplotting the same attributes estimated from seismic data.
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Figure 4. Crossplots of seismic-scale inverted attributes at 30 well locations color-coded by facies flags at log scale. The overall position in the 
crossplot of thick sands (red) with respect to the background (cyan) is as expected from rock physics diagnostics at log scale (Figure 3). Departures 
from the 45˚ line in crossplot (d) of impedances from PS fast versus PS slow data indicate azimuthal anisotropy. As expected in this field from 
Figure 3, thick sand facies tend to be more anisotropic.

Figure 5. (a) Example of sand probabilities derived from a two-dimensional crossplot between inverted VP and rho colored by sand flags. 
Areas of low sand (red) count in (b) are related to areas of low probability in (a). The method presented in this paper generalizes this concept to 
crossplots of more than two dimensions.
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Figure 6. Log data versus probability estimates from seismic data 
using different combinations of attributes at well 21B-28 within the 
marine interval. (a) Gamma ray; (b) sand flag; (c) moving average 
of sand flag; (d) to (h) probabilities from seismic attributes. (d) VP-
VS; (e) VP-rho; (f ) VS-rho; (g) VP-VS-rho; (h) VP-V,-rho-pSIf-pSIs. 
Only 30 wells (out of 102) were used to train the seismic data in this 
example.

Figure 7. Thick sand probability from seismic data extracted along a cross section of 102 wells from a 3D probability cube for the marine 
interval of Mamm Creek Field. These probabilities were estimated by using five inverted seismic attributes and thick-sand flags shown in Figure 
8. (Red = higher probability and green = lower probability). Since the separation between wells is not constant, we do not show a horizontal scale 
in this cross section. The smallest separation between neighboring wells in the field, however, can be up to 330 ft (see Figure 2).

Figure 8. Log-scale thick sand facies flags along a cross section of 102 wells overlain on seismic probabilities shown in Figure 7. Since the 
separation between wells is not constant, we do not show a horizontal scale in this cross section. The smallest separation between neighboring wells 
in the field, however, can be up to 330 ft (see Figure 2).

was confirmed by density logs available in almost all well 
locations.

5) Velocity model building and time-to-depth conversion 
of seismic-derived information honoring depths of five 
formation tops picked along 102 wells. Three separate ve-
locity models were built to perform depth conversion of 
compressional, fast PS, and slow PS volumes, respectively.

6) Extraction of seismic-derived attributes along well trajec-
tories in depth using a sampling interval of 1 ft. This ap-
parent “oversampling” of the seismic data along the well 
trajectories will help to compare, in a statistical sense, the 
seismic-scale response with the log-scale facies flags.

7) Crossplots of seismic-derived attributes colored by log-
scale facies within intervals of similar geologic character-
istics, either fluvial or marine. Figure 4 shows examples of 
these crossplots for the marine section of Mamm Creek 
Field. Even though seismic-scale crossplots in Figure 4 
show more scatter than log-scale crossplots in Figure 3 
(due to scale differences of the measurements, inaccuracies 
in inversion results and well-seismic mis-ties due to poor 
velocity control in areas away from well markers), red sand 
flags in Figure 4 tend to fall in the same crossplot areas 
predicted by log-scale analysis (see Figure 3). Although not 
shown here, thick sands tend to cluster much more than 
thin sands in seismic-scale crossplots. This makes sense if 
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Figure 9. Comparison of log-scale information (gamma-ray, sand flag, thick-sand flag, average 
sand flag), seismic-scale information (inverted VP, VS, and rho above bracket), and sand 
probability curve. The joint use of log- and seismic-scale information in the probabilistic sense 
explained in this paper yields a higher-resolution attribute than the individual inverted results (VP, 
VS, and rho) used as input.

we think that thick sand bodies 
are easier to “see” at seismic scale 
than thin bodies. Different crite-
ria were used to create thickness-
related sandy facies flags. We se-
lected the one that produced a 
more clustered seismic response in 
2D crossplots, usually related to 
sand thickness of about 10-15 ft.

8) Estimation of probabilities of 
thick sand bodies using different 
combinations of inverted seis-
mic attributes. Figure 5a shows 
an example of probabilities esti-
mated using the two-dimensional 
crossplot between inverted VP and 
inverted rho shown in Figure 5b. 
Areas with a low count of sand 
flags yield lower probabilities 
than areas with higher count of 
flags. Among the attribute com-
binations (crossplots) tested, the 
most relevant were VP-VS, VP-rho, 
VS-rho, VP-VS-rho, and VP-VS-
rho-pSIf-pSIs. Figure 6 shows the 
results of probabilities estimated 
from different attribute combina-
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tions at a selected well 
location. The poorest 
predictions are obtained 
when using a VP-VS 
crossplot alone (Figure 
6d). Predictions are 
considerably improved 
when including density 
in the analyses (Figures 
6e and 6f ). The best 
predictions, when using 
P-wave data attributes 
only, are obtained by 
combining VP, VS, and 
rho (Figure 6g). Finally, 
when P-wave and mul-
ticomponent-derived 
attributes are used si-
multaneously in the form of a five-dimensional crossplot, 
we obtain the best predictions (Figure 6h); estimated prob-
abilities resemble very closely the average of the facies flags 
from well data (Figure 6c). As shown in Figure 4d, PS at-
tributes are sensitive to sand anisotropy and for this reason 
including these attributes in the analysis helps to improve 
the detection of thick sand facies in the marine portion of 
the field. As explained in the section “Probabilities from 
crossplots”, the number of classes used to grid the attribute 
crossplots (M x N in a 2D crossplot) was determined after 
examining the results of different numbers and looking for 
a compromise between resolution and stability. We con-
sidered 50 classes per attribute adequate for this particular 
data set.

Notice that even though none of the crossplots in Figure 
4 shows separation between thick sands and background fa-
cies, the joint probabilistic analysis of all attribute responses 
still yields good estimates of probabilities of thick sand facies.

Out of the 102 wells available for this study (see Figure 2), 
we started testing the probability estimations by using only 30 
wells selected from the original 102 wells with the only crite-
rion that they covered the study area evenly. Figure 6 shows an 
example of the result of training the seismic data with 30 wells 
only. Blind tests (not shown) were also conducted to test the 
predictive power of probability estimations in wells not used 
to train the seismic data. Probabilities were also computed by 
training the seismic data extracted along all 102 wells with fa-
cies flags generated along the same wells. The purpose of this 
test was to understand how much predictions could be im-
proved by introducing all well data available. Figure 7 shows a 
cross section of the five-seismic-attribute-derived probabilities 
along the 102 wells. A cross section of facies flags used to color 
the five-dimensional crossplot is shown in Figure 8 overlain 
on the seismic-derived probabilities. Notice how facies dis-
tribution expected from log data agrees well with estimated 
probabilities from seismic. The fact that the result is not per-
fect means that sand flags used to train the seismic data do 
not act as hard constraints in the final probability estimations.

Figure 9 shows an example of the results in the fluvial in-
terval at a selected well location. As expected, the joint use 
of log-scale and seismic-scale information in a probabilistic 
sense yields an attribute (the sand probability) with higher 
resolution than the original inversion results. The probabil-
ity results, however, do not reproduce the log-scale average 
sand flag as closely as in the marine interval. This is expected 
because, as indicated earlier, mapping of fluvial sands in this 
field is a tougher problem than mapping of marine sands since 
the former are thinner and less continuous.

In addition to comparing directly the sand probabilities 
from seismic with sand flags along the wells to assess the 
quality of the results (Figures 6 to 9), we can do other types 
of comparisons. Figure 10 shows a comparison of a net-to-
gross (NTG) sand map derived from interpolation of log data 
(Figure 10a) in an interval of 140 ft within the fluvial sec-
tion with the average sand probabilities in the same interval 
(Figure 10b). Notice how the general trends are the same but 
seismic-derived probabilities contain additional details in the 
interwell region. Figure 10c shows a crossplot of NTG derived 
from well data versus average probabilities in the same interval 
where the maps were made. The correlation coefficient is very 
good (0.70) but the seismic tends to underestimate the NTG 
(the cloud of points in the crossplot is not centered around 
the diagonal). Besides lack of resolution of the seismic data 
to resolve all thin sands that are part of the net sand estimate 
from log data, another reason to explain this underestimation 
is that these thin sands were not used to train the seismic data.

Conclusions
Facies probabilities can be easily estimated from multidimen-
sional crossplots of seismic attributes using basic probability 
definitions. The method yields useful results even when there 
is complete overlap of seismic attributes of target and back-
ground facies, as long as the target facies show at least some 
clustering. No rock physics model is assumed to link the in-
verted seismic attributes with the facies of interest which are 
identified at log scale using basic petrophysical principles. By 
analyzing log-scale and seismic-scale information in the same 

Figure 10. (a) Net-to-gross (NTG) map created by interpolating net-sand values extracted from well data in 
an interval of 140 ft within the fluvial section. (b) Average sand probabilities from seismic data within the 
same interval. (c) Crossplot of NTG values and average probabilities extracted at the well locations. R2 is the 
correlation coefficient. Seismic-derived results show the same trends as well-derived maps but contain more 
detail in the interwell region. Compared to well-derived NTG, seismic-derived probabilities (NTG) tend to 
underestimate the sand content in this case. Information from 102 wells (red dots in the maps) was used to 
generate these figures (see Figure 2 for enlarged well locations).
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framework (crossplots), probability results show higher reso-
lution than original inverted seismic traces.

Application of this method at Mamm Creek Field shows 
that even when no single attribute or pair of attributes yields 
good separation of sand and background facies, probability 
estimates obtained by combining more than two attributes 
compare favorably with facies information at well locations. 
When using PP data only, good results are obtained by using 
simultaneously VP, VS, and density derived from three-term 
AVO inversion. However, the best results are obtained when 
using jointly these three attributes from PP data with fast and 
slow pseudo S-impedances derived from inversion of PS data. 
Sensitivity of PS amplitudes to azimuthal anisotropy helps to 
improve sand identification where sands are more anisotropic 
than the background.

Although not shown in this paper, the application of this 
approach yields seismic-scale estimates of facies-proportion 
curves that can be used to guide the construction of more 
detailed geological models (Michelena et al., 2009) using geo-
statistical techniques. More research needs to be done to un-
derstand how to use this methodology to help the calibration 
with log data of other seismic attributes such as structural or 
frequency-related. 
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