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Constraining 3D facies modeling by seismic-derived facies 
probabilities: Example from the tight-gas Jonah Field

Seismic reservoir characterization is usually based on the 
interp retation of seismic attributes that relate to the 

geological feature or reservoir property of interest. If we 
are interested in fault geometries, a variety of geometric 
attributes can be used to map the details of fault distributions 
and constrain discontinuities and fl ow barriers in geological 
and fl ow-simulation models. If we are interested in reservoir 
properties, however, the usual approach is to estimate seismic 
attributes that are qualitatively related to such properties. Th e 
interpretation of the attribute focuses on the identifi cation 
of “good” and “bad” areas depending on how the attribute 
relates to the property of interest. 

Th is is the case, for instance, when interpreting acoustic 
impedance generated from seismic data.

If the goal of the project is to separate good from bad 
areas in terms of porosity development, all we need to do is 
verify that there is indeed a relation between porosity and 
acoustic impedance in a few wells and apply this idea to the 
interpretation of “highs” and “lows” in the acoustic imped-
ance volume. Another example is the use of prestack-derived 
attributes, which are usually interpreted in terms “gas” and 
“no gas” or “sand” and “no sand” depending on the position 
of the data in crossplots of prestack-derived attributes at seis-
mic scale. 

On the other hand, if the goal of the project is to go be-
yond qualitative interpretations and build a geological model 
that can be later transformed into a fl ow-simulation model, 
something else besides using attributes to separate the reser-
voir into good and bad areas needs to be done. Th is is a more 
ambitious goal that requires more well control and other tools 
that can help to transform qualitative relations observed in 
rock physics diagnostics into quantitative variations across 
the reservoir. 

A fl ow-simulation model often requires much more than 
a simple porosity fi eld generated by applying a linear regres-
sion between impedance and porosity. While simple models 
may be all we need to simulate fl uid fl ow in certain geological 
settings, complex geological or fl uid variations may require 
additional information before meaningful fl uid-fl ow simula-
tion is attempted. 

Fluvial sandstone reservoirs of low porosity and low per-
meability are a good example of reservoirs that require com-
plex geological models to properly describe their internal 
architecture. Th ese reservoirs are typically referred to in the 
literature as “tight.” Geological facies are the key parameter 
when performing geomodeling in these reservoirs for various 
reasons. First, thicker multistory (vertically stacked) channels 
are more prolifi c than single-story channels or individual, iso-
lated sand bodies. Second, porosity versus permeability rela-
tions change according to facies type and, therefore, a clear 
understanding of facies variability becomes a prerequisite 
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before any porosity-permeability distribution is attempted. 
Th ird, nonpay facies are usually upscaled coarser than pay 
facies to keep the size of the fl uid-fl ow models manageable 
while preserving important details in the interval of interest. 

In this paper, we propose a statistical workfl ow to clas-
sify and map facies based on log and seismic data. Facies are 
then used as the basis to distribute porosity and permeability 
across the reservoir. Our approach combines geologic deter-
minism to analyze log data with statistical approaches to ana-
lyze seismic data and indicator-based geostatistics to model 
single- and multistory-channel facies with appropriate spatial 
and geometric statistics. Unlike commonly used approaches 
to map facies or lithologies from seismic data based on color-
ing “independent” regions in seismic attribute crossplots, our 
approach accounts properly for overlap among diff erent sce-
narios and quantifi es the probability of their occurrence. 

A central aspect of this paper is the generation of facies 
probabilities from seismic data. Since crossplots of seismic-
derived attributes are the heart of our method to compute 
probabilities, we will start by revisiting the use of crossplots 
for facies/lithology classifi cation. Th en, we summarize the 
method to extract facies probabilities from crossplots of seis-
mic attributes colored by facies information. Finally, we apply 
this method to help the characterization and modeling of a 
typical tight-gas reservoir, the Lance Formation at Jonah Field 
in Wyoming’s Green River Basin in the United States. 

Crossplotting revisited
Crossplotting is a simple but powerful tool to examine the 
relations between two diff erent variables, data series, logs, 
or seismic attributes. By using a third variable to assign a 
color to each point in the crossplot, we can also assign dif-
ferent meanings to diff erent regions in the crossplot that can 
help in the interpretation of the relations of the two main 
variables. Usually, the color is directly related to the reser-
voir property of interest. When applied to analyze seismic 
attributes at log scale, a colored crossplot can help us decide 
whether a particular combination of seismic attributes can 
be used to separate areas of the reservoir with the desired 
property from areas without it. 

When performing rock physics feasibility studies at log 
scale to decide whether a combination of seismic attributes 
is adequate to separate areas of the reservoir with diff erent 
properties, rock types or, more generally, diff erent reservoir 
conditions, the usual approach is to look for separation of the 
attribute responses to the diff erent scenarios in the crossplot 
domain too. When the separation is perfect, cutoff s or poly-
gons drawn in the log-scale crossplot to separate the diff erent 
scenarios are then used to interpret the corresponding attri-
butes at seismic scale. However, perfect separation does not 
occur often in practice and therefore, cutoff s or polygon-based 
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approaches tend to misclassify 
many points by either leaving 
behind points with the desired 
reservoir conditions or by classi-
fying as desirable points that are 
not. Besides, since absolute val-
ues and ranges of variability of 
attributes at log scale and seismic 
scale may be diff erent, cutoff s or 
polygons derived from log-scale 
attributes may not be adequate 
to separate the desired scenarios 
when applied to the same attri-
butes at seismic scale. 

Figure 1 summarizes diff er-
ent cases commonly observed in 
practice when performing col-
ored crossplots. Typical respons-
es range from perfect separation 
of the desired scenario from the 
background (Figures 1a and 1g), 
complete overlap with clustered 
response for the desired scenario 
(Figure 1c), to complete overlap 
of the diff erent scenarios with no 
clustering in the response (Fig-
ure 1e). 

Th e cases shown in Figure 1 suggest that, besides separa-
tion, clustering of the response of the desired scenario with 
respect to the response of the background is a situation we 
need to examine more carefully. To achieve this goal, let’s as-
sume that the target (red dots) in Figure 1 corresponds to gas-
saturated sandstones embedded in a wet background (blue 
dots). Even for the case of complete overlap in the response 
of the two cases (Figure 1c), the likelihood of fi nding gas-sat-
urated sands is larger for the attribute values where the target 
cluster “lives” in the crossplot versus the likelihood of fi nding 
gas elsewhere. 

Th e method we use in this paper to analyze colored cross-
plots goes beyond drawing polygons or extracting cutoff s to 
separate the scenarios of interest. It quantifi es the statistical 
diff erences in the responses of the diff erent scenarios. Th e 
next section shows how to do this in detail starting from basic 
probability defi nitions. 

Probabilities from crossplots
Briefl y, we use conditional probabilities and the correspon-
dence of the diff erent log-scale scenarios with seismic-scale 
attributes sampled at well locations to estimate the likelihood 
of the desired scenario away from wells. Similar results can 
be obtained using Bayes’s formula to estimate the probability 
if a prior estimate of likelihood is known.

A conditional probability estimates the likelihood of an 
event of interest given that a conditioning event is known to 
occur:

                   (1)

Figure 1. Conceptual crossplots of two seismic attributes color-coded by another variable related to 
the reservoir property of interest. Th e target (gas-saturated sandstones, for instance) is colored in red 
and the background is colored in blue. (a) Good separation between background and clustered target. 
(b) Partial separation, clustered target. (c) No separation, clustered target. (d) No separation, partially 
clustered target. (e) No separation, unclustered target. (f ) Partial separation, unclustered target. (g) 
Good separation, unclustered target. Using the statistical approach described in this paper, it is possible 
to assign probabilities to the target even when it does not separate well from the background (cases b, 
c, d, and f ) but the response is at least clustered or partially clustered around a certain region. Th is 
approach won’t yield reliable results, however, in case (e) when the background and the target cover 
the same area in the crossplot. In this case the probability of the target will be the same for all attribute 
values. 

Here, P(S) is the probability of observing the desired 
scenario S (e.g., a particular facies code value), and A is a 
conditioning event providing extra information (in our case, 
observed seismic attributes).

Conditional probabilities are well suited to this applica-
tion because they do not require that any particular form of 
relationship, or even any relationship at all, exists between sce-
narios and attributes: If the target scenario is neither clustered 
nor separated from the background, as in Figure 1e, then the 
probability away from well locations won’t change much for 
the entire range of attributes. Additionally, no assumptions 
are made about probability distributions or independence.

We defi ne conditioning events by superimposing an M × 
N grid on the attribute crossplot; each rectangle in the grid 
defi nes a conditioning event Aij ,1  i  M, 1  j  N (see 
Figure 2). In notation, 

Aij = {aj-1  Attribute A  aj  bi -1  Attribute B  bi}, (2)

where a0...,aN and b0,...,bM are the gridline values. We expect 
that samples within a scenario should have similar seismic 
response, so these events should tend to capture any relation 
between scenarios and attributes. Moreover, the conditional 
probabilities using these conditioning events can be estimat-
ed easily simply by counting the number of log data samples 
in the rectangle that are in the scenario and dividing by the 
total number of samples in the rectangle:

         (3)
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Here NL is the count over log data samples. Th is approach 
easily generalizes to cases where more than two attributes are 
believed to be related to the property of interest.

Selection of M and N for defi ning conditioning events 
involves a tradeoff  and should be done on a case-by-case ba-
sis: Large M and N (small rectangles) will tend to group very 
closely related samples and give stronger separation, but NL 
values that are too small could mean sensitivity to noise and 
other errors. On the other hand, small M and N (large rectan-
gles) will group more loosely related samples and give weaker 
separation, but larger NL values mean more stable estimates.

Th e next section explains how this method fi ts in a more 
general reservoir characterization workfl ow and how results 
derived from it can be used to map porosities and permeabili-
ties across the reservoir.

Jonah Field example
Jonah Field is estimated to contain 8–15 TCF of natural 
gas in a productive area of approximately 32 miles2. Most 
production comes from overpressured and ultralow-perme-
ability sandstones of the Lance Formation, Upper Creta-
ceous (Maastrichtian). Th e Lance Formation is braided-to-
meandering fl uvial channels intercalated with overbank or 
fl oodplain siltstones and mudstones. Th e median permeabil-
ity of sandstones within the Lance Formation is about 0.01 
md and median porosity is about 8%. Th e top depths of the 
Lance Formation range between 8000 and 10,000 ft and the 
gross pay interval ranges between 2800 and 3500 ft. Sig-
nifi cant changes of sandstone occurrence and thickness in 
closely spaced wells provide strong evidence for a high degree 
of vertical and lateral depositional compartmentalization in 
the Lance Formation. Strong compartmentalization trans-
lates into infi ll well performances that are highly variable 
and diffi  cult to predict. For this reason, a reliable estimation 
of the facies distribution within the Lance is crucial for the 
development of the fi eld. More details about Jonah Field can 

be found in a classic compilation of papers by Robinson and 
Shanley (2004). Additional information about characteriza-
tion and fl uid fl ow simulation results in Jonah Field can be 
found in Michelena et al. (2009).

Th e results presented in this paper were obtained from 
9.7 miles2 of the fi eld using approximately 40 wells to both 
calibrate the seismic response and build the geomodel. Char-
acterization of the facies geometry focused on the identifi ca-
tion of pay and nonpay facies using core and well-log data. 
Pay facies consist of single- and multistory channels. Single-
story channels correspond to sandstone bodies accumulated 
in point bars associated with meander belts aligned NW-SE. 
Nonpay facies consist of fl oodplains, fi ne-grained shaly sand-
stones, and thin sandstones. Th ese last two facies are inter-
preted to be small crevasse splays and levees. 

Facies geometries were characterized using three diff er-

Figure 2. Probability estimations from crossplots. A rectangular 
grid is superimposed on the crossplot and individual probabilities of 
the diff erent scenarios (red and blue in this example) are calculated 
for each rectangle. Th ese probabilities are then assigned to the whole 
seismic volume. 

Figure 3. Crossplots of log scale acoustic versus shear impedance 
within the Lance Formation at three well locations. Four lithologies 
can be estimated from petrophysical analysis: clean sand, shaly sand, 
silty shale and shale. Th ese lithologies can be further grouped into facies 
using rules based on thickness and dominant lithology: Multistory 
channels (clean sands of thickness greater than 15 ft), single-story 
channels (clean sands between 15 ft and 5 ft), sandy fl oodplains (clean 
sands less than 5 ft) and shaly fl oodplains (shales). Crossplot (a) is 
color-coded by lithologies and crossplot (b) is color-coded by facies. 
Notice how facies are easier to separate than lithologies since clean 
sands show more dispersion in the crossplots than thicker channel 
facies, and are probably easier to detect with seismic data.
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ent methods to capture diff erent scales of variability across 
the fi eld: (1) local, log scale around each well; (2) global, log 
scale for the whole section; and (3) seismic scale for the whole 
section. Th e workfl ow to characterize facies at these diff erent 
scales follows.

Petrophysics. Petrophysical analysis and modeling was the 
starting point of the reservoir characterization workfl ow. Th e 
result of this step is a normalized set of enhanced logs that 
were used for seismic-well calibration, stratigraphic interpre-
tation, and facies classifi cation. Well-log derived porosities 
were calibrated with core data.

Log-scale lithology and facies classifi cation. Determination 
of lithology and facies associations was the next step. A set 
of rules designed to classify all lithologies (coal, shale, silty 
shale, shaly sandstone, and clean sandstone) based on density 
and vshale logs was applied to all wells. Results were carefully 
checked for misclassifi cations and calibrated with core data. 
Using these lithology logs, facies associations were then de-
veloped based upon the dominant lithology and thickness of 
each interval. Th ree facies were identifi ed depending on the 
thickness of the clean sand interval: multistory channels, sin-
gle-story channels, and silty-sandy fl oodplains (from thickest 
to thinnest, respectively). Th e term shaly fl oodplain was ap-
plied to nonpay intervals where shales and/or coals were the 
dominant lithology. See caption of Figure 3 for more details 
about the facies association rules. 

Crossplots of impedances at log scale. Rock physics analysis 
of well-log data indicates that seismic attributes derived from 
3D prestack seismic data may be good indicators of the pres-
ence of sands in the Lance Formation. Figure 3a shows how 
clean sands tend to cluster in one area of the P-impedance 
versus S-impedance crossplot for three wells in the fi eld, but 
some sands are still present in other areas of the crossplot and 
the overlap between sands and other lithologies is substan-
tial. Figure 3b shows the crossplot of acoustic versus shear 
impedance colored by facies. Notice how there is less disper-
sion in the channel response across the crossplot in Figure 3b 
when compared with the sand response shown in Figure 3a, 
which suggests that acoustic properties of thick sand bodies 
are more consistent than those of individual, isolated sands. 
Notice also that acoustic impedance alone is not enough to 
separate diff erent lithologies or facies. Th e fact that most 
sands or channels tend to cluster in one area of the crossplot 
served as the basis to justify performing prestack acoustic and 
shear-impedance inversion in a 100 mile2 area in the middle 
of the fi eld.  

Stratigraphy. Stratigraphic correlations and seismic inter-
pretation are very diffi  cult at Jonah Field due to rapid lat-
eral changes in lithology within the Lance Formation. For 
this reason, only major markers clearly visible in both facies 
logs and seismic data were correlated in this section: TFU0, 
KL_Upper and Mesaverde. Th ese markers separated the pro-
ducing zone in two main intervals: Unnamed Tertiary at the 
top and Lance Formation at the bottom. Two iterations were 
required to ensure consistency between seismic horizons and 
well markers.

Vertical facies proportion curves. Once the seismic-guided 

stratigraphic correlations were completed, the intervals of in-
terest were divided into a fi xed number of layers for all wells 
in the study area. Layer thickness was variable, but averaged 
approximately 5 ft. Th e total thickness of each facies for all 
wells was calculated for each layer and the relative propor-
tions of the diff erent facies by layer were computed. Th e re-
sult of applying this process to channel and nonchannel facies 
at each well is shown in Figure 4. Th ese curves (known as 
“vertical facies proportion curves”) are used to estimate and 
constrain the relative amounts of each facies in each layer of 
the geomodel. After examining the relative proportions for 
each depth interval, it is evident that in terms of spatial vari-
ability the Upper Lance Formation shows more continuous 
and thick channels than the overlaying Unnamed Tertiary 
and the underlying Lower Lance. As shown in Michelena et 
al. (2009), these diff erences in channel variability and thick-
ness have a direct impact on gas recovery for the diff erent 
intervals and sections of the fi eld.

Crossplot of impedances at seismic scale. Acoustic- and 
shear-impedance volumes were converted to depth by using 
a velocity model that precisely matched all well markers at all 
wells used for the study. Only four out of the 40 wells used in 

Figure 4. Channel facies (red area) from vertical proportion curves 
(VPC) computed from 39 wells versus average channel probabilities 
extracted from seismic data calibrated with 39 wells (blue curve) 
and 4 wells (red curve). Seismic-derived probabilities follow the same 
trend as the VPC. Th ese results indicate that channel facies are more 
abundant in the Upper Lance interval. For all 39 wells, the interval 
between the TFU0 marker and Mesaverde marker was divided into 
705 layers to compute the vertical proportion curves. Th e average layer 
thickness is 5 ft. 
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this study had sonic logs and, therefore, well markers played a 
key role in the construction of the velocity model. Impedance 
volumes in time were converted to 110×110×5 ft cell size im-
pedance volumes in depth. After time-to-depth conversion, 
seismic-scale acoustic and shear impedances were extracted 
at each well location at the well-log sampling rate. Figures 5a 
and 5b show crossplots of seismic-scale impedances colored 
by log-scale lithology and facies fl ags respectively. As expected 
from the analysis of log-scale impedances (Figure 3), clean 
sands and channel facies (in red) tend to cluster in the area 
of the crossplots that corresponds to higher impedances and 
lower VP/VS ratios. Th e small separation between channel and 
nonchannel facies observed at log scale is smeared off  at seis-
mic scale, but the channel response is still more clustered than 
the clean-sand response, as observed also at log scale. Notice 
that the impedance ranges of the crossplots in Figures 3 and 
5 are diff erent. Th is indicates that a polygon drawn around 
channel facies in the crossplots at log scale will misclassify 
many points when also used to classify facies at seismic scale. 

Figure 5. Crossplots of seismic-scale acoustic versus shear impedance 
within the Lance Formation at 39 well locations. Th e fact that clean 
sandstones (a) show more dispersion in the crossplots than thicker 
channel facies (b) indicates that facies are easier to separate than 
lithologies by using seismic data. Only one sample every 50 ft has been 
used to simplify the display of these crossplots. However, all samples 
were used to estimate the channel probabilities. 

Figure 6. Depth slices within Lance Formation of channel 
probabilities extracted from 3D channel probability cubes estimated 
from seismic-scale acoustic and shear impedances and log scale facies: 
(a) using 39 wells and (b) using 4 wells. Both slices are extracted at 
the same depth. Locations of wells used to compute the probabilities 
are black. Both maps show similar trends, but the one created with 
4 wells (b) tends to be more optimistic since these particular wells 
are in a region with higher overall sand content. A detailed reservoir 
simulation model was built in the area within the blue square. 

Figure 7. Comparison of log scale facies with channel probabilities 
estimated from seismic data for 3 diff erent wells.  Log scale facies (left 
at each well) vary from 1 (shaly fl oodplains, cyan) to 4 (multistory 
channels, red). Channel probabilities from seismic (right fi gure at 
each well location) vary from low (cyan) to high (red). Th e correlation 
coeffi  cients (cc) at the bottom of the fi gure are computed using a 
smooth facies log and the channel probability from seismic extracted at 
each well. Notice how channel probabilities correlate well with thicker 
stacks of channels, even though these channel probabilities are not able 
to separate individual multistory channels observed at well locations. 
Misalignments between facies logs and channel probabilities from 
seismic are due to inaccuracies in the time-to-depth conversion which 
is poorly constrained within the Lance interval.
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Figure 8. Examples of facies maps extracted from layers of the 3D facies model built using log and 
seismic data. By defi nition, proportions of channel (red) and nonchannel (cyan) facies in the maps are 
consistent with proportions indicated by the vertical proportion curves for the corresponding layer.  

If the polygon is drawn directly in seismic-scale crossplots, 
the amount and connectivity of channel facies will be over-
estimated. 

Facies probabilities from seismic. 3D probabilities of chan-
nels based on acoustic- versus shear-impedance crossplots 
were computed using the approach described in the section 
“Probabilities from crossplots” above. Figure 6 shows depth 
slices within the Lance Formation extracted from the channel 
probability cubes calibrated using facies logs from 39 and 4 
wells, respectively. Both slices show similar trends, but the 
one extracted from the probability cube built with 39 wells 
estimates shows overall lower probabilities. Th e fact that 
probabilities estimated by calibrating with 39 or 4 wells show 
similar variability suggests that this technique can yield useful 
results in areas with sparse well control, provided these few 
wells capture adequately the overall seismic response of the 
diff erent facies. 

Layer averages of facies probabilities cubes are the seismic 
resolution equivalent to the log-based facies proportion curves. 
Figure 4 compares the average probabilities (for 39 and 4 
wells) computed for each stratigraphic layer with the channel 
proportions calculated using facies logs in the same area. No-
tice that seismic-derived probabilities follow the same trend 
as the channel, vertical proportion curve. Th e consistency of 
these two pieces of information suggests that seismic-derived 
probabilities can be used as secondary data to constrain the 
lateral distribution of facies in the geomodel. Th e fact that 
the probabilities estimated using 39 wells are closer to the ac-

tual proportions curves than the 
probabilities estimated with four 
wells suggests that adding more 
wells helps obtain better absolute 
probabilities.

Figure 7 compares log-scale 
facies with channel probabilities 
from seismic at three wells. Even 
though channel probabilities do 
not separate individual multi-
story channels at wells, they do 
correlate with thicker stacks of 
channels.

3D facies modeling. Th e fi rst 
step of the geomodeling pro-
cess consisted of gridding seis-
mic horizons in depth. Second, 
a high-resolution (66 × 66 × 5 
ft) 3D stratigraphic grid was 
constructed to model the fi ne-
scale vertical heterogeneity of 
the reservoir. Areal experimental 
variograms were estimated from 
seismic-derived facies probabil-
ity cubes and vertical variograms 
were estimated from well logs. 
Th e facies probabilities esti-
mated from seismic impedances 
in depth were mapped onto the 

stratigraphic grid and rescaled layer-by-layer to match the 
global vertical proportion curves. Th is result was then used 
as secondary data to constrain the lateral distribution of fa-
cies using sequential indicator simulation (Goovaerts, 1997; 
Deutsch, 2002). Besides incorporating the lateral channel 
variability observed in the seismic data, facies models built 
in this fashion also honor both local facies information from 
well data and global facies proportion curves. Figure 8 shows 
the result of the facies distribution in 3D for selected layers 
of the model. Notice how the facies distribution honors the 
facies proportions calculated from well data and refl ects the 
heterogeneous nature of the fl uvial environment. 

Porosity and permeability distribution. Porosity was distrib-
uted on the seismic-constrained facies models using facies-
dependent variograms and sequential Gaussian simulation 
while also honoring log data and porosity statistics per facies. 
Porosity in nonpay facies was set to zero. No attempt was 
made to use acoustic impedance as secondary data to map 
porosity because, as shown in Figure 3b, acoustic impedances 
alone do not discriminate between channel and nonchannel 
facies in Jonah Field. Permeability was distributed using a 
core-derived porosity-permeability cloud transform. For fl ow 
simulation, the fi ne-scale geomodel was then upscaled to pre-
serve details of vertical heterogeneous channel distributions 
and property variations. 

Discussion and conclusions
We have presented a workfl ow to estimate facies probabilities 
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from log and seismic data and use this information to con-
strain the facies distribution in the reservoir. Our workfl ow 
starts by performing careful petrophysical and geological 
analysis which results in a set of facies logs that are used to 
help the characterization of facies at three diff erent scales. 
Local facies curves and vertical proportion curves are treated 
as hard data whereas seismic derived probabilities are used as 
soft constraints when building the geomodel and distribut-
ing facies using sequential indicator simulation. 

A key step in the workfl ow is the estimation of facies prob-
abilities from seismic data. Our approach estimates the likeli-
hood of diff erent scenarios from crossplots of seismic attri-
butes colored by the property of interest. Unlike polygon- or 
cutoff -based approaches, our approach accounts for overlap 
of the diff erent scenarios. Th e example from Jonah Field sug-
gests that lateral averages of facies probabilities derived in this 
fashion are the analogs at seismic scale of vertical proportion 
curves estimated from log data. Vertical proportion curves are 
used to rescale facies probabilities from seismic before these 
probabilities are used to constrain facies distribution in the 
geomodel. 

Facies are the key parameter when modeling tight-gas 
reservoirs. Besides determining which areas of the reservoir 
are more prolifi c, controlling the relations between porosity 
and permeability, and helping in the upscaling process, our 
examples from Jonah Field also show that facies are easier to 
detect than individual lithologies when using seismic attri-
butes. Crossplots at both log and seismic scale from Jonah 
Field show that thick channel facies show less dispersion in 
attribute crossplots than individual sand bodies. Th is obser-
vation suggests that acoustic properties of small sand bodies 
are less consistent and more variable across the reservoir than 
those of thicker stacked sands. Probabilities of channels es-
timated from seismic data at Jonah Field correlate well with 
stacks of multistory channels. 

Suggested reading. Geostatistical Reservoir Modeling by Deutsch 
(Oxford, 2002). Geostatistics for Natural Resource Evaluation by 
Goovaerts (Oxford, 1997). “Infi ll well evaluations of Jonah Field 
tight gas: characterization and simulation of complex architec-
tural elements” by Michelena et al. (First Break, 2009). Jonah 
Field: Case Study of a Giant Tight-Gas Fluvial Reservoir, edited 
by Robinson and Shanley (AAPG Studies in Geology 52, 2004). 
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