
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 1, JANUARY 2003 59

Lithologic Characterization of a Reservoir Using
Continuous-Wavelet Transforms

Giselle Álvarez, Bruno Sansó, Reinaldo J. Michelena, and Juan Ramón Jiménez

Abstract—We consider the problem of characterizing the
lithology of a reservoir using gamma ray logs as well as seismic
traces around the well. We first calculate the continuous-wavelet
transform of the the data and then use the fact that the energy
of such transformation is proportional to a power of its scale.
The technique consists in estimating the power transformation
obtaining a set of values of the same size as the original data and
then modeling the distribution of these values using a double
exponential. We find that wells that are predominantly sand
correspond to distributions that are significantly different from
those that correspond to wells that are predominantly gravel. This
happens in both cases: gamma rays and seismic traces. We use
this characterization to classify other points in the reservoir.

Index Terms—Bayesian statistical methods, continuous-wavelet
transform, lithology classification.

I. INTRODUCTION

O IL DOES NOT accumulate in all types of rock. Once
generated at the source rock, hydrocarbons may travel

large distances throughout the porous medium until they find
the proper conditions that help to trap them. First, they need to
find a porous rock (the reservoir rock) where they can rest until
we reach them; second, they need to find a seal that prevents
them from traveling any further. Typical examples of reservoir
and seal rocks are sandstones and shales, respectively. For this
reason, determining rock types in a certain oil exploration area
becomes a fundamental task that helps to exploit the existing
reserves more efficiently. At well locations, we can record var-
ious types of well logs that can help us differentiate among rock
types. Since this information is restricted to a few feet around the
well location, the classification of rock types across the reservoir
usually relies on crude interpolations of log measurements from
well locations to the interwell space. However, when seismic
data are available, we can use them to guide such interpolations,
or we can analyze how the seismic data themselves respond to
changes across different rock types that have been previously
labeled at the well.
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Various authors have proposed methods to classify rock types
by analyzing subtle changes in seismic waveform in the inter-
well space [1]–[4]. Most of these methods rely on some measure
of change in the shape of the waveforms in the seismic data or
other attributes derived from them.

We show in this paper a method to analyze the shape of the
seismic waveforms based on their fractal behavior. Change in
such behavior, as shown in [5], can be related to change in rock
type. The method we propose is based a statistical framework
and provides a probabilistic assessment of the uncertainties. It
is beyond the scope of this work to compare our proposal with
other methods for the classification of rock type using seismic
data. Other authors [6]–[10] have presented neural-net-based
statistical methods applied to geophysical inverse problems for
estimation of rock properties. In particular, a Caianiello neural
network has been suggested. This consists of neural wavelet es-
timation, input signals reconstruction, and nonlinear factor op-
timization. These algorithms solve a wide range of geophysical
inverse problems.

Rocks exhibit fractal behavior [11] that tells whether there
is order and structure in the internal relation among their
different scales. Measurements of properties of rocks at these
different scales may also show such a behavior even though
the relations between such properties and the rocks themselves
may be rather complicated. Todoeschucket al. [12] show that
the acoustic reflectivity of a sequence of rocks is also fractal,
which suggests that quantities derived from properties that
show fractal behavior may also be fractal. Jiménezet al. [13]
show that changes in the fractalility of acoustic reflectivity may
be related to changes in the predominant rock type in the area
where the log was recorded. Moreover, they show that seismic
traces (that can be modeled as the convolution of the reflectivity
series with a wavelet) show distinctive fractal behaviors for
different lithologies. They used this observation to classify rock
types across a reservoir using three-dimensional seismic data.

The method proposed in [13] is based on the estimation of
fractal-related properties of the signal using a discrete wavelet
transform. Using resistivity logs from two different wells lo-
cated in areas that penetrate sandy and shaley environments re-
spectively, the authors perform a discrete wavelet decomposi-
tion and compute the variance of the coefficients at every level
of detail; then they plot the result against its corresponding scale.
They observed that the slopes of the resulting straight lines,
which provide estimates of the fractal dimension of the signals,
are related to the dominant lithology around the wells. This work
is the main motivation of our paper. We are interested in looking
at the problem of the characterization of the lithology from an
inferential point of view and measure the uncertainty in the char-

0196-2892/03$17.00 © 2003 IEEE



60 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 1, JANUARY 2003

acterization, which is not considered in [13]. The starting point
of our analysis is the assumption of a probability model that in-
volves unknown parameters to be estimated.

Using a discrete wavelet transform, we are able to obtain a
single estimate of the fractal dimension of each signal. Contin-
uous-wavelet transforms (CWTs) are not subject to decimation
and can thus produce a numerous assembly of estimates that can
be used to infer about a probability distribution for the fractal
dimension. This is the starting point of the present paper. Then,
we observe that the distribution of the power of the scale of the
wavelet transform corresponds to a double-exponential distribu-
tion, which depends on a location and a scale parameter. We con-
sider a statistical test to assess that the location parameter is dif-
ferent for seismic traces recorded in different types of rocks. The
observation that the data can be fit accurately with a double-ex-
ponential probability distribution, whose parameters depend on
the rock type where the signal is recorded, is the essential tool
for the proposed classification method of our paper. Our test is
based on a Bayesian approach, which allows us to use probabil-
ities to quantify uncertainties. Once we observe that the fractal
dimensions of different lithologies are statistically significantly
different, we can use the double-exponential model to classify
signals, with the added bonus that we quantify how uncertain
the classification is. A map is drawn using the probabilities for
each type of lithology in the reservoir.

The paper is organized as follows. In Section II, we present
the definition of CWTs and a property of them that is essen-
tial for the development of this work. Section III describes the
data used in this study. In Section IV, we consider the problem
of the characterization of the lithology, estimating the power of
the scale of the wavelet transformation. Section V formalizes the
comparison between the proposed distribution in the previous
section, following a Bayesian approach. Finally, in Section VI,
we describe the classification procedure that consists in calcu-
lating the posterior probability that a new observation belongs
to one of the two distributions proposed for the power param-
eter.

II. CWT

Let be a complex-valued square-integrable function that
satisfies theadmissibility condition

Then is called awavelet function. Define as the family
of functions given by translations and rescales of

For any square-integrable function, theCWT is defined as a
function of two variables

where denotes the conjugate of . The dilation
and translation parametersand vary continuously over

, respectively. When the admissibility condition is satisfied, it
is possible to find the inverse continuous transformation

We consider a discretization of the CWT. The CWT of a uni-
variate function is a function of two variables. However, to min-
imize the redundancy in the transformation, one selects discrete
values and to produce an invertible transformation, but any
sampling that preserves all information about the decomposed
function cannot be coarser than the critical sampling, which is
defined by and , , , which produce
a minimal basis. Any coarser sampling will not give a unique
inverse transformation. For more details see [14].

An important property of , which is key for the de-
velopment of the present paper, is that there is a link between
the regularity of and that of the energy of . In fact, if

(Hölder space with exponent) then we have that

(1)

For details see [15]. Fixing, we can use (1) to estimateby
regressing on . This idea is de-
veloped in [16] to characterize properties of turbulent flows in
Duke Forest, NC.

It is known that, based on well-log measurements, a number
of geophysically important rock properties like porosity, resis-
tivity, density, to name a few, have been found to exhibit mul-
tifractal behavior [17]–[20], meaning that the Hölder exponent

takes different values in time. Such a structure, as argued in
[16], calls for using the CWT, given its ability to estimate local
scaling exponents. It has the advantage over the Fourier trans-
form of giving information not only of the global frequency con-
tent of a signal but also shows where, in time, certain frequency
components occur.

In this paper, we present a method to characterize both the
seismic data around each well and-ray logs based on property
(1). We estimate the powerfor each depth, obtaining a set of
values of the same size as the original signal; we then model the
distribution of these values using a double exponential. We find
that different lithologies are associated with different values of
the location parameters of such distributions.

III. D ESCRIPTION OF THEDATA

For the purpose of this study, we analyze a dataset consisting
of 17 -ray logs and 100 km of two-dimensional seismic data
recorded in western Venezuela, in the Barinas-Apure basin. The
wells penetrated rock columns whose lithologies were either
predominantly sands or predominantly gravel. We also have
three additional -ray logs from wells located in transition zones
between sand and shale.

Even though seismic traces are proportional to changes
in medium properties (reflectivity) rather than the properties
themselves, we still used seismic traces to perform our analysis.
However, we believe that for the purpose of these analyses, the
acoustic impedance obtained from the seismic trace may be
more adequate, since it is related to interval medium properties.
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(a)

(b)

Fig. 1. 
-ray logs for (a) gravel well and (b) sand well.

The choice of the window length may present problems for
the statistical analysis, due to possible variations of the lithology
within such a window. In our study, the average window length
for the analysis was determinated by the petrophysicist as 150
ft, which corresponds to 32 s in the seismic traces. As shown in
[13], we expect the ability of the method that separates different
rock types to improve as the central frequency of the signal in-
creases. These results suggest that the use of seismic data after
deconvolution should produce clearer separations between dif-
ferent rock types. Nevertheless, deconvolution was not applied
to the data we used.

We assume that the frequency content of the seismic data does
not change significantly within the interval of interest, since
drastic changes in frequency content may produce large changes
in the fractal behavior that are not related to changes in rock
type. For this reason, the method proposed in this paper will
work best when the depth may introduce changes in frequency
content due to signal attenuation.

In our study, the target interval was flat at a depth of 9000 ft.
The average frequency with this interval was 30 Hz.

Fig. 1 shows typical -ray logs and Fig. 2 seismic traces cor-
responding to wells of each of the considered lithologies. The

-ray logs show considerable differences when changing the
predominant rock type, but seismic data recorded in the same
positions do not show the same obvious differences. However,
as we show in Sections IV–VI, seismic data do respond differ-
ently depending on the predominant rock type where they travel
producing traces with the different energy levels. Our method is
able to detect those subtle differences.

IV. CHARACTERIZATION OF THE LITHOLOGY

Our method is based on posing the characterization of the
lithology of the reservoir as a problem of statistical model com-
parison. After calculating the continuous-wavelet decomposi-

(a)

(b)

Fig. 2. Seismic traces for (a) gravel well and (b) sand well.

Fig. 3. Estimated scaling exponent� for b = 40 ms andb = 450 ms is given
by the slopes of the straight lines.

tion of a particular signal, we obtain a collection of coefficients
. To illustrate the process of estimating, we considered a

particular seismic trace and took two values of: 40 and 450
ms, regressing in each case on . For
each straight line, we obtained one slope3.1615 and 3.0585,
respectively, i.e., one estimate of thecoefficient. The results
are shown in Fig. 3. Since there are as manyvalues as data
points in the signal, we obtain a transformation of the signal in
terms of energy power coefficients. The previous process was
repeated for each of the seismic traces and well logs.

Fig. 4(a) shows the estimated densities of the coefficients cor-
responding to the-ray logs of sand and gravel wells. An anal-
ogous plot is shown in Fig. 4(b) for seismic traces around those
wells. We observe, in all cases, a rather picked shape, that sug-
gests the use of a double-exponential density. Also, it is apparent
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(a)

(b)

Fig. 4. Frequency distribution for the power coefficients� for (a)
-ray logs
and (b) seismic traces. Dotted lines represent double-exponential densities fitted
by maximum likelihood.

from Fig. 4 that the locations of the densities change with the
lithology.

To assess the dependence of the previous results on the type
of wavelet function, we considered a Haar basis, a Mexican Hat,
and a Gaussian. In all cases, we obtained coefficients with a
picked density that appeared to be different for points that corre-
spond to different lithologies. The results presented in this paper
are based on the use of the Haar’s basis.

Based on the shape of the distribution shown in Fig. 4, we
propose the following model:

(2)
where corresponds to sand and to gravel.

Grouping the power coefficients that correspond to all wells
with the same lithology, we can obtain maximum-likelihood
estimators of the locations and scales of the proposed
double-exponential distribution. The results are shown in
Table I.

We observe that the location parameters seem to differ, whilst
the scale parameters appear to be equal. In order to formally
assess the significance of those differences we consider the

TABLE I
ESTIMATED POWER PARAMETERS FOREACH LITHOLOGY

following four possible models for the distribution of the
coefficients:

It is apparent from Fig. 4 that the location of the densities
changes with the lithology, so we expect that the selected model
will be , which corresponds to densities with different loca-
tion parameters. Note that in Table I the absolute value(the
mean of the double-exponential probability model) is larger for
sand than for gravel, which indicates that the fractal dimension
of signals from different rock types is different. However, the
physical reasons that explain these difference are still unknown
and need more research.

We also applied our methodology to a dataset consisting of
two resistivity logs as well as two density logs, from two dif-
ferent wells. These were recorded with the aim of character-
izing a clastic, Eocene reservoir in Lake Maracaibo, Venezuela,
located at a depth of 12 300 ft. These wells are located in areas
that penetrate sandy and clay-contaminated sand environments,
respectively. We obtained analogous results: the distribution of
the scaling exponents corresponded to double-exponential dis-
tributions with significant differences in the mean parameter,
and the method was able to discriminate the lithologies.

V. MODEL SELECTION

In order to formalize the comparison between the two distri-
butions proposed in the previous section, we consider the more
general case where there arepossible models
for a set of data . The th model corresponds to a density

, , and is a distribution that expresses
prior knowledge on , while ,
corresponds to the prior probability that we assign to model
before observing any data.

In our case, corresponds to vector in (2) and .
Following a Bayesian approach, probabilitiescan be updated
using theBayes factor, which is defined as

where

is themarginal distributionof under model . Then the pos-
terior probability of model after observing the data is
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TABLE II
POSTERIORPROBABILITIES OF MODELS

The Bayes factor can be interpreted as the posterior odds
ratio of to . It describes the weight of evidence in the data
in favor of the model , (see [21]). Assuming a 0–1 loss func-
tion, the optimal Bayesian selection corresponds to the model
with greater posterior probability.

Difficulties arise if the prior is specified to represent
very weak information about . If the parameter space is un-
bounded, we cannot specify as a uniform distribution,
and thus the prior distributions are generally improper and de-
pend on an arbitrary constant . The resulting
Bayes factor

is undefined (the constants are not canceled) and cannot be used
for model selection.

A possible solution to this problem is to approximate the
Bayes factor with the following criteria:

• Akaike’s Information Criterion

(3)

• Bayesian Information Criterion

(4)

where is the classical likelihood
ratio test statistic (e.g., see [22]), andthe number of parame-
ters in model . Both criteria can be used to compare models

and .
The was proposed to counteract the tendency of classical

tests to favor the more complex model if the amount of data is
large. On the other hand, the criterion achieves an even
more radical adjustment , which increases with

. For details see [23] and [24]. Other approaches have been
proposed in [25].

We compare the four models proposed in Section IV using
and obtain the results shown in Table II. Model has

greater posterior probability in both cases: well logs and seismic
traces, suggesting that a characterization of the two lithologies
can be done by the location parameters of the double-exponen-
tial distribution.

VI. CLASSIFICATION

The results obtained in the Section V show that a successful
characterization of the lithology can be done in terms of the dis-
tribution of the power parameter. We can now use this fact to
classify new observations: i.e., suppose observations at a new

location become available; then, after performing the transfor-
mation of the data, we have a new sample of power parameters.
The classification procedure consists of calculating the proba-
bility that this sample belongs to one of the two double-expo-
nential distributions.

The general problem of classifying a new observation
within a collection of possibles classes , after
observing a sample, can be stated as follows. Supposehas
density if it belongs to class , and let and
be, as before, the prior probability of class and the prior
distribution of , respectively. Then the posterior density of

can be used to compute the predictive density of a future obser-
vation given the data , under class

(5)

Thus, the posterior probability thatbelongs to the class is

(6)

and we can assign to the class for which
is maximum. In the double-exponential case, using the prior

, which is known as the Jeffrey rule and is ac-
cepted as a reference noninformative prior (see [21]), we obtain
that the predictive density is

(7)

where , is the dimension of equal to ;
and are the lengths of vectorsand respectively,

denotes the order statistic of the sample that is
the sampled values placed in ascending order and

with , ,
and .

The procedure defined by (5)–(7) can be used to classify ob-
servations obtained from either well logs or seismic traces. To
map the information in these two types of data, we note that they
are based on different tools and procedures, and so it is reason-
able to consider them conditionally independent. We modify the
numerator in (6) by letting

(8)

Locations where seismic traces are available conform a grid.
We calculated the posterior probability of sand or gravel in each
point of the grid using the predictive density in (7) with the infor-
mation of the seismic traces and the well logs. For each location
on the grid, we considered the 25 nearest neighbors to obtain
the mean trace and transformed it to obtain the corresponding
coefficients. In such a way, we obtained vectorin (5). Vector

in (8) is given by the mean traces around the locations of the
wells, and is the vector of wells logs. We considered initial
probabilities equal to 0.5 for both types of lithologies. The map
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Fig. 5. Facies classification map using the posterior probability of sand based
on seismic traces and well logs at points that are marked.

TABLE III
ESTIMATED PROBABILITY OF MISCLASSIFICATION

obtained with this procedure is shown in Fig. 5. The points that
appear in the map correspond to the locations of wells for which
the lithology is known and in which the classification was cor-
rect.

In order to validate the classification procedure, we consid-
ered each point of the reservoir where-ray logs are available.
For these the lithology is fairly well studied. We calculated the
probability of sand and gravel using (6), wherewas taken as
the -ray log of a given well and as the logs of all remaining
wells, in a cross-validating fashion. The proportion of misclas-
sified wells calculated is given in the left column of Table III.
A similar analysis was performed using the mean seismic trace
at each well, producing results reported in the right column of
Table III.

VII. CONCLUSIONS

We have presented a methodology to characterize the
lithology of a zone of interest in a reservoir. The method
is based on an estimation of the power energy coefficient
of signals corresponding to-ray logs as well as seismic
traces penetrating the rock. In both cases, we find significant
differences in the mean value of the power coefficient.

The characterization is extended in a Bayesian fashion to ob-
tain a classification procedure that uses the information con-
tained in both types of signals simultaneously. The results are
checked, for well locations, using cross validation. For other
points in the reservoir, we present a map based on the probabil-
ities of each type of lithology, which is highly consistent with
geophysical knowledge of the area.
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