
In recent years, neural-network-based methods for esti-
mating pseudo-well-logs from existing well logs and 3D seis-
mic data have been gaining popularity. Their main
advantage over most traditional estimation methods is their
ability to extract nonlinear relationships between the seis-
mic data and the sparse set of well logs we want to inter-
polate. However, the process to go from seismic data and
existing well logs to a dense 3D cube of pseudo-well-logs
is not simple. The success of the estimation depends on the
success of many critical subprocesses and choices that are
not trivial and, as far as we know, have not been well doc-
umented in the literature.

In this paper, the steps we recommend for the estima-
tion of pseudo logs from 3D seismic data are described.
These steps are: selection of study area, preprocessing of well
log and seismic data sets, neural network training, and gen-
eration of the pseudo-well-log volume. We explain in detail
our usual practices related to the solution of key issues such
as data aliasing, seismic resolution versus well-log resolu-
tion, selection of optimal neural network parameters, sta-
tionarity, and confidence intervals of the estimates. Finally,
we show a field data example from eastern Venezuela, where
a volume of spontaneous potential (SP) and its corre-
sponding confidence intervals from 3D seismic attributes
and 25 SP logs are estimated with this workflow.

Pseudo-well-log estimation methodology. The methodol-
ogy to go from seismic data to pseudo-well-logs consists of
five steps (Figure 1):

1) Selection of the study area. To be able to use the method-
ology reliably, the data set should consist, at least, of:

• A seismic volume, processed preserving true relative
amplitudes to avoid distorting existent relationships,
if any, between the well logs and the seismic response.

• Accurate T-Z curves to perform depth-to-time con-
version of well logs, which is a critical step of the pro-
cedure.

• Enough well-log data to provide a good statistical rep-
resentation of the spatial variations of the study area.

Both well-log data and seismic data must be contem-
poraneous to guarantee that they represent the same in-situ
conditions in the reservoir. The reliability of the final pseudo-
logs will depend on whether the data set satisfies all con-
ditions described above.

2) Well-log data preprocessing. In this step all well logs are
converted from depth to time and the results are both resam-
pled and smoothed. The first procedure is easily performed
by using a T-Z curve and spline interpolators. Ideally, we
should have a T-Z curve at each well of the given data set.
In practice, however, this is not always possible and regional
T-Z curves or T-Z curves from neighboring well curves have
to be used.

Depth-to-time conversion yields well logs referred to
time, but their samples are not uniformly spaced and do not
necessarily coincide with the sample times of the seismic
data. This means we must resample the well-log data.
Because well-log sample intervals are much smaller than
seismic sample intervals, many log samples will fall between

two consecutive seismic samples after depth-to-time con-
version. For this reason, a simple interpolation of the well-
log information at the sample times of the seismic data can
produce well-log estimates affected by aliasing. There are
two options to overcome this problem:

• Low-pass filter the log data to limit their spectral content
to that of the seismic data so that aliasing is avoided when
downsampling log data to the seismic resolution.

• Resample the well-log data at uniform time intervals pre-
serving its resolution and upsample the seismic data in
order to match log sample times.

We prefer the second alternative because it increases the
seismic data sampling frequency. This choice increases the
size of the training data set and allows us to possibly broaden
the bandwidth and thus increase the resolution of the result-
ing pseudo-logs.

Although nonlinear estimation methods may be able to
increase resolution in some cases, we should not expect to
obtain a transformation that goes all the way from seismic
resolution up to well-log resolution because the spectral
content of log data is much broader than the spectral band-
width of the seismic data. This fact leads us to the third pro-
cedure, smoothing the resampled well-log data.

As Figure 2 shows, well-log data are smoothed by using
a low-pass filter whose cutoff frequency is a little above the
highest seismic frequency. How far from the seismic reso-
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Figure 1. Steps of the methodology.

Figure 2. Smoothing well-log data resampled in time.
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lution limit we can go is still a question to be answered.
Trying to go too far above will severely affect the conver-
gence during the training stage of the neural network.

3) Seismic data preprocessing. This consists of extracting
from the 3D seismic cube the traces closest to each well, plus
upsampling and averaging of such data. The extraction of
the closest traces works well when we are dealing with ver-
tical wells but may fail when wells are either deviated or
horizontal. In these cases, pseudo seismic traces must be con-
structed along the well trajectories (Figure 3).

Once the traces have been extracted from the seismic vol-
ume, each trace is upsampled to generate a seismic sample
at each time value at which a well-log sample exists.
Upsampling can be easily achieved by using conventional
interpolation filters or spline interpolation. This procedure
increases the sampling frequency of the seismic data but it
does not increase the seismic resolution.

Then, the information provided by the seismic traces at
each well can be used to train the neural network.

4) Neural network training. The neural network architec-
ture we use is the well known multilayer perceptron, which
can be trained by using the popular back-propagation algo-
rithm (Haykin, 1994). In the standard training strategy, two
data sets must be created from the available data, a train-
ing set and a test set. The training set is the one used to actu-
ally train the neural network; the test set is used to provide
a stopping criterion. Each element of these sets is composed
of a well-log sample and its related seismic attribute sam-
ples.

At this point, to estimate a sample of each pseudo-well-
log we can:

• Use all seismic attribute values from neighboring traces
so that a spatial convolution operator is implemented.

• Use only the attribute value of the average trace of traces
around the selected location.

• Use all seismic attribute values from a time window
around the well-log sample location so that a time con-
volution operator is implemented. Instantaneous seismic
attributes are the most suitable for this approach.

• Use only the seismic attribute value related to the same
well-log sample location. Interval seismic attributes are
the most suitable for this approach.

In theory, the combination of the first and third
approaches should produce the most accurate estimates,
because a cube of attribute samples is used to estimate each
pseudo-log sample. However, to simplify and speed up the
training process, we choose the combination of the second
and fourth alternatives because it requires fewer input nodes
for the neural network.

Convergence of the weight matrix during the training

process and the resulting performance of the neural network
estimation mostly depend on factors such as number of lay-
ers and neurons, type of activation function, and both data
quality and size. However, the proper selection of algorith-
mic elements such as data normalization, output layer lin-
earization, and both training and test sets selection can also
improve the performance of the estimation.

5) Pseudo-well-log data volume generation. Once the neural
network has been successfully trained it can be used to esti-
mate a pseudo-well-log volume from the seismic volume.
Notice that the same upsampling and averaging processes,
applied in step 3 to the traces used to train the network, must
be applied to the whole seismic volume prior to attribute
computation.

Other important issues concerning attribute set selection
and neural network parameter determination will be dis-
cussed in detail in the following section.

Parameter selection and confidence intervals. The solution
to the problems of selecting the proper attributes and neural
network parameters is more an art than a systematic pro-
cedure.

Let’s start with the problem of attribute selection: Which
attributes are the most adequate for the type of log we want
to interpolate? How many attributes should we use?
Traditional methods such as principal component analysis
can help answer these questions, but they do not guaran-
tee to produce the best set of attributes when using a non-
linear estimation technique. Although exhaustive search, or
other techniques, such as stepwise regression (Hampson et
al., 2001) can be used, more research is still required in this
area.

We consider the time and space coordinates of each sam-
ple as crucial additional attributes. These attributes can help
the neural network learn the spatial variations of the non-
linear relationships between the seismic data and well logs.
Nonstationarity can be characterized by including these
attributes. In particular, the time attribute (sample number)
plays a very important role in helping the neural network
follow the low frequency trends of the well-log properties.
Similarly, in-line and cross-line coordinates are very useful
to follow the lateral variations of the well log response.
However, in areas with strong lateral variations, we should
be careful when using these attributes if we don’t have
enough well control.

The problem of neural network parameter selection is
also difficult. We must determine the amount of hidden lay-
ers and the amount of neurons at each hidden layer. In prac-
tice, we have found that two hidden layers offer the most
appropriate tradeoff between training feasibility and net-
work performance in the estimation problem. However, the
problem of determining the total amount of neurons for each
hidden layer is also difficult.

Both problems, attribute selection and neural network
parameter determination, would be ideally approached as
an optimization problem in which the total cross-validation
error is minimized (the cross-validation error is the error
resulting from estimating a well log that was intentionally
excluded from the training procedure, and the total cross-
validation error is the addition of the cross-validation errors
computed for all the available well logs). However, in prac-
tice, this procedure can be extremely time consuming and
difficult, so that attribute selection and neural network para-
meter determination becomes more an art than a standard
procedure.

Once the best set of attributes has been found and the
optimal neural network configuration has been determined,
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Figure 3. Extraction of seismic data around each well location
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the network can be trained to perform the subsequent
pseudo-well-log volume estimation. However, different con-
structions of the training and test data sets yield different
pseudo-log volumes. This means each training exercise can
be considered as a particular realization of a statistical sim-
ulation, which will basically depend on how the available
data are separated into training and test sets. In this way,
multiple training exercises will allow us to perform a Monte
Carlo simulation, from which a distribution of pseudo-well-
log volumes can be generated. From this distribution, we
can obtain the most probable pseudo-log volume along with
its confidence interval, as shown by Banchs and Michelena
(2000).

Field data example. To illustrate the methodology described
above, we estimate a pseudo SP-log volume from 3D seis-
mic attributes in a field from eastern Venezuela. In this field,
SP logs have proved good lithological indicators and, there-
fore, we expect a volume of pseudo SP logs can reveal valu-
able information about the continuity of sand bodies. This
information is critical to determine the proper recovery
strategies for the reservoir.

Figure 4 illustrates the region under consideration for
our test and all wells used for training the neural-network-
based estimator. The total extension of the study area is 3.77
� 1.52 km, and the time interval was 1400-1500 ms.

We used 25 SP logs to train the neural network, which
consisted of a four-layer perceptron with 10, 12, 12, and 1
neurons in each layer, respectively. Ten seismic attributes
were used in this exercise: sample number, in-line coordi-
nate, cross-line coordinate, time integral of the amplitude,
time integral of the absolute amplitude, instantaneous phase,
derivative, second derivative, average frequency, and aver-
age amplitude.

The number of neurons in the hidden layers and the seis-
mic attributes were empirically selected after some experi-
mentation following the criteria described previously. Once
we determined the best set of seismic attributes and the
neural network parameters, we performed 70 independent
simulations (with different training and test data sets). From
these simulations, we extracted the most probable pseudo-
SP-log volume and its associated confidence interval. 

Figure 5 shows a cross-section of the resulting pseudo-
SP-log volume along with its estimated error. Notice the pres-
ence of sand lenses (blue) which are consistent with the
sedimentological model of the reservoir. Estimation errors
between wells are lower than errors in the borders of the
study area which means the methodology works best when
interpolating rather than extrapolating information.

The correlation coefficients between actual and esti-
mated SP curves at wells A, B, and C are 0.92, 0.83, and 0.72,
respectively. Figure 6 shows the actual SP curves (blue)
along with the estimated confidence intervals. 

The confidence curves in Figure 6 were computed by
adding and subtracting the estimated error to the average
pseudo-SP values at each well. Notice how the actual SP
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Figure 6. Actual SP curves (blue) and confidence intervals (between
red curves) at three different wells.

Figure 7. Time slices of one pseudo SP log volume realization. Sands
are blue and shales red.

Figure 4. Region under consideration and locations of wells used to
train the neural network.

Figure 5. Cross-section of the average pseudo-SP volume and its esti-
mated errors.
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curves tend to remain bounded by the estimated confidence
curves.

Figure 7 shows four time slices corresponding to one of
the 70 simulations performed to estimate different pseudo-
SP-log volumes. Notice how, as time increases, a structure is
evidenced on the left of the sections. This result confirms the
existence of a dome in the reservoir model and contributes to
map accurately the location of  producing sands (blue).

Final remarks. Dense 3D volumes of pseudo-well-logs can
be estimated from 3D seismic data and sparse real logs
using neural networks as the estimation engine. The use of
neural networks allows inferring the nonlinear relation-
ships that may exist between the given well logs and the
seismic data. This process, however, is not straightforward
and the accuracy of the estimates depends on many factors
such as quality of seismic and well-log data, processes
applied to these data, frequency content and resolution, het-
erogeneities of the reservoir, and both seismic attributes and
neural network parameters selected for the estimation.

In this paper, we have explained in detail what we con-
sider, from our experience, good practices to handle the
whole process, from data preprocessing to estimation of
confidence intervals, such that the final pseudo logs are
good estimates of all given logs. However, even though the
methodology offers important advantages such as the abil-
ity to incorporate spatial and temporal variations in the
relationships between seismic data and log data, it still

requires much more research and practical tests to be able
to determine systematically the best set of attributes used
for the estimation, to determine the best combination of
neural network parameters that optimize its performance,
to obtain faster confidence intervals, and to determine how
far beyond the seismic resolution we can expect to go with
this kind of nonlinear estimators.

Suggested reading. “Well-log estimates and confidence inter-
vals by using artificial neural networks” by Banchs and
Michelena (SEG 2000 Expanded Abstracts). “Use of multiattribute
transforms to predict log properties from seismic data” by
Hampson et al. (GEOPHYSICS, 2001). Neural Networks: A
Comprehensive Foundation by Haykin (Macmillan, 1994).
“Seismic-controlled nonlinear extrapolation of well parame-
ters using neural networks” by Liu and Liu (GEOPHYSICS, 1998).
“Seismic guided estimation of log properties” by Schultz et al.
(TLE, 1994). “Seismic attributes, their use in petrophysical clas-
sification” by Taner et al. (SEG 2001 Expanded Abstracts). “Seismic
reservoir characterization of a mid-continent fluvial system
using rock physics, poststack seismic attributes and neural net-
works: A case history” by Walls et al. (SEG 2000 Expanded
Abstracts). TLE
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