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Singular value decomposition for cross-well tomography

Reinaldo J. Michelena*

ABSTRACT

I perform singular value decomposition (SVD) on
the matrices that result in tomographic velocity esti
mation from cross-well traveltimes in isotropic and
anisotropic media. The slowness model is parameter
ized in four ways: One-dimensional (I-D) isotropic,
l-D anisotropic, two-dimensional (2-D) isotropic, and
2-D anisotropic. The singular value distribution is
different for the different parameterizations. One-di
mensional isotropic models can be resolved well but
the resolution of the data is poor. One-dimensional
anisotropic models can also be resolved well except
for some variations in the vertical component of the
slowness that are not sensitive to the data. In 2-D
isotropic models, "pure" lateral variations are not
sensitive to the data, and when anisotropy is intro
duced, the result is that the horizontal and vertical
component of the slowness cannot be estimated with
the same spatial resolution because the null space is
mostly related to horizontal and high frequency vari
ations in the vertical component of the slowness.

Since the distribution of singular values varies de
pending on the parametrization used, the effect of
conventional regularization procedures in the final
solution may also vary. When the model is isotropic,
regularization translates into smoothness, and when
the model is anisotropic regularization not only
smooths but may also alter the anisotropy in the
solution.

INTRODUCTION

In ray theoretic traveltime tomography, the solution of a
linear system of equations is the heart of the problem.
Solving this linear system transforms variations in travel
times into variations in model parameters. This transforma
tion from data to model depends on the properties of the
matrix that describes the linear system, and singular value

decomposition (SVD) is the tool for studying such proper
ties.

SVD has been applied in the past to study the structure of
the matrices involved in tomographic traveltime inversion
problems. White (1989), Bregman et al. (1989), and Pratt and
Chapman (1992), among others, present singular values and
singular vectors in model space for cross-well geometries.
Stork (1992) also shows singular values and the correspond
ing singular vectors in model space for the problem of
reflection tomography. All these studies, however, have not
reported the results of the SVD completely because they
make no reference to the properties of the singular vectors in
data space.

For a small cross-well geometry, this paper presents the
complete results of the SVD (singular values and singular
vectors in both data and model spaces) of matrices that
result from the following four types of parameterization: I-D
isotropic, 2-D isotropic, I-D anisotropic, and 2-D anisotro
pic. The anisotropy is assumed to be elliptical. These four
models differ as to how they incorporate the prior informa
tion that might be available about the medium. My results
show that the model that makes more assumptions about the
medium (1-D isotropic) is the one that can be estimated
better whereas the model that makes fewer assumptions (2-D
anisotropic) contains a large null space that may distort the
anisotropy as well as the heterogeneities in the solution.
Although these results are not surprising, they remind us
that when prior information about the medium is available it
is important to incorporate it in the parameterization, be
cause otherwise the results may not even contain the ex
pected features or they may be severely distorted, especially
when the medium is anisotropic.

The results of SVD of the previous matrices show how
damping the matrix inversion affects the solution when the
velocity model is isotropic and anisotropic. As expected,
when the model is isotropic, damping the solution results in
smoothness in the image. However, when the model is
anisotropic, damping not only creates smoother images but
also may distort the anisotropy or create artificially aniso
tropic results.
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1656 Michelena

THE LINEAR SYSTEM

Regardless of how the model is described, the problem of
ray theoretic traveltime tomography always reduces to the
solution of a linear system of equations of the form:

This paper is an example of the type of analysis that can be
performed for any recording geometry to gain insight into
how data and model parameters relate. This insight can help
to improve both the data acquisition and the estimation of
the parameters.

horizontal homogeneous layers or by square pixels
(Michelena et al., 1993). Even though most rocks are not
elliptically anisotropic, by using elliptical anisotropy I can
show some of the difficulties we may encounter when
tomographically estimating variations in velocity with both
direction and position. When the anisotropy is elliptical, the
representation of the slowness images is a generalization of
expression (2) as follows:

(4a)

N

Sx(x, z) = 2: SxjRj(x, z),
j = 1(1)Jm = t,

where Rj(x, z) is nonzero only at the jth cell, Sj is the
slowness within that cell, and N is the total number of cells
(either layers or square pixels). The corresponding vector of
model parameters is

(6)

(4b)

N

Sz(x, z) = 2: SzjRj(x, z).
j=l

where Q is an M x M orthonormal matrix of eigenvectors
that span the data space, y is an N x N orthonormal matrix
of eigenvectors that span the model space, and ~ is an M x
N diagonal matrix whose elements are the singular values of
J. The columns of U (u) are the eigenvectors of JJT, and the
columns of y (v) are the eigenvectors of JTJ.. The decompo
sition (6) is called singular value decomposition.

When a singular value is zero, the corresponding singular
vector in data space cannot be mapped into model space or
vice versa. Data vectors or model vectors with zero singular
value belong to the null space and cannot be resolved. When
a singular value is not zero but is small compared with the
largest one (i.e., the condition number is large), the contri
bution of the corresponding eigenvectors to the solution
must be eliminated or attenuated, that is regularized, be
cause the matrix inversion may become unstable.

Any M x N -matrix J can be decomposed in the following
way (Golub and Van Loan, 1989):

SVD: A SHORT REVIEW

where Sx and Sz are the horizontal and vertical components
J J

of the slowness, respectively.
If the vector m is not transformed into an image(s), it is

difficult to understand the relations among its different
components. The same applies for the vector t of travel
times. A simple method of mapping t into an image has been
used in recent publications (see, for example, Squires et al.,
1992). The mapping consists of plotting each component of t
at its corresponding source-receiver location in a 2-D space
where the axes are source depth and receiver depth. Trav
eltimes corresponding to sources and receivers at the same
depth map into the diagonal of the image and other travel
times corresponding to rays that travel at nonzero angle with
respect to the horizontal map off the diagonal. This transfor
mation of the vector t into an image and the transformations
(2) and (4) are used extensively in the next sections to
visualize the vectors in both data and model space that result
from the SVD.

The corresponding vector of model parameters is

(3)

(2)

N

S(x, z) = 2: SjRj(x, z),
j~l

When the model for velocities is anisotropic, our choices
for defining the global model space m increase substantially
because all the models available in the isotropic case for
describing the heterogeneities are now combined with all the
different models available for describing the anisotropy. The
selection of the proper combination velocity-model/hetero
geneity-model should be made according to any prior knowl
edge we might have about the medium. The examples that
follow show that introducing prior information in the proper
way in each of these two models helps to estimate both of
them more accurately but, unfortunately, if one of the
models is incorrect or too general, the results obtained with
the other model may be also incorrect.

In this paper, I assume that the anisotropy is elliptical and
that the model of heterogeneities is described either by

where J is a matrix whose elements depend on the raypaths
and on how the model is described, m is the vector of model
parameters, and t is the vector of measured traveltimes. The
vectors m and t may also represent variations with respect to
a given model and to measured traveltimes, respectively.

The model space represented by m consists of two sepa
rate models: one for the heterogeneities and one for the
velocities. If the model for velocities is isotropic, the ele
ments of m usually represent the coefficients of the expan
sion of the slowness model in a basis function that describes
the model of the heterogeneities. Moreover, if the basis
function is also orthogonal (i.e., its different elements do not
overlap), each component of m represents the slowness
within one particular region in space. Although other basis
functions that don't have the property of orthogonality have
been recently proposed (Harlan, 1989; Van Trier, 1988;
Michelena and Harris, 1991), those that have such a property
are still the most widely used to represent I-D layered
models (large, rectangular cells) and arbitrary 2-D variations
(small, square cells). In this paper, I focus on these two
types of basis function to describe the model of heterogene
ities. In both cases, the isotropic slowness model can be
expressed as
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SVD forCross-well Tomography 1657

SVD: APPLICATION

Isotropic models

FIG. 1. Recording geometry used to do the SVD for the
different parameterizations. The slowness is constant and
therefore, the raypaths are always straight.

means that the problem is well-conditioned. The largest
singular values correspond to singular vectors in data and
model space (u and v, respectively) whose components are
roughly of the same magnitude. With this parameterization
only some "big structures" (averages) in data space can be
explained whereas in model space all the parameters can be
well resolved. By representing the singular vectors in data
space u as images, it is possible to identify source-receiver
pairs whose traveltimes belong to the null space and there
fore cannot be resolved or have no influence in the estima
tion of the model parameters. For this reason, errors in these
particular traveltimes (noise) will also have little or no effect
in the solution, which means that this parameterization is not
too sensitive to errors in the data.

Allowing lateral variations in the previous parameteriza
tion results in a matrix J whose SVD is shown in Figure 3.
The largest singular value corresponds roughly to horizontal
layers (in model space) and nonhorizontal rays (in data
space). As the singular values decrease, the eigenvectors in
model space tend to contain more horizontal and high
frequency variations and the eigenvectors in data space tend
to span near and far vertical offsets (diagonal and nondiag
onal structures in the data images). In model space, the
smallest singular values correspond to "pure" horizontal
variations, which means that the data is not sensitive to this
type of variation in the model. In data space, the smallest
singular values correspond to rapid changes among nearby
traveltimes that have little or no influence on the model.
Rapid changes among nearby traveltimes might be produced
by noise that, unfortunately, is not necessarily confined to
the less influential part of the data. Therefore, in some
applications it might be necessary to damp the effect of
singular values larger than those contained in the null space
to attenuate the effect of certain components of the noise.

The results shown in the previous two figures are as
expected. In both cases the largest eigenvalues correspond
to gross features in both model and data space. When few
parameters compared with the number of data points are
used (Figure 2), the data is not well resolved, and when the
number of parameters is increased, some components of the
model (pure lateral variations, for example) may be difficult
or impossible to retrieve from the given data, even if the
problem is overdetermined as in Figure 3.

Even though these results were expected, they have
received little attention. The discretization of the model in
square pixels assumes that we don't know anything about
the spatial variations in the medium, unlike the discretization
of the model in layers. Since the discretization of the model
in layers is a subset of the discretization of the model in
square pixels, we may think that whatever can be estimated
by using homogeneous layers can be also estimated by using
homogeneous square pixels. What Figures 2 and 3 show is
that this statement is not necessarily true. The estimation of
the parameters depends on how the data and parameters
relate to each other. In problems of tomographic estimation
of velocities, 2-D inversions are done often in places that are
known to be isotropic and horizontally layered to account
for all possible "unexpected" variations in the medium. The
extra degrees of freedom (and the null space) introduced in
the inversion have to be penalized appropriately in the
objective function, which produces an image with less reso-

6a

SVD (Dongarra et al., 1979) was performed on the matrix
Jafter describing the model space as described by equations
(2) and (4). To represent the results of the SVD, I show the
singular values simultaneously with the singular vectors in
data" and model space, both sets of vectors having been
transformed into images as explained in the previous sec
tion. This representation of the SVD results follows Pratt
and Chapman (1992), with the addition of the singular
vectors in data space.

The ray geometry used to compute the SVD for the
different parameterizations is shown in Figure 1. It is the
same as the one used by Pratt and Chapman (1992); five
sources and five receivers in separate wells in a constant
slowness medium. When the model is isotropic, the matrix J
depends only on the ray geometry, and when the model is
anisotropic, J depends on both the ray geometry and the
slowness model (which is constant in this case). which
means that even when the rays are straight the tomographic
estimation of velocity anisotropy is, in general. a nonlinear
problem. Ray bending adds another nonlinearity to the
problem.

Figure 2 shows the SVD when the model is discretized
using six horizontal isotropic layers [equation (2)]. The
differences among the singular values are small, which
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1658 Michelena
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FIG. 2. Singular value decomposition when the model is described as a superposition of six horizontal isotropic layers (l-D
isotropic). Vector u represents the singular vectors in data space and v represents the singular vectors in model space. The
origin of the axes is at the upper left corner of each image. Parameter r is the receiver axis, s is the source axis, x is the
horizontal distance, and z is the depth. Most singular vectors in data space are in the null space. The gray scale goes from black
(negative) to white (positive).
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FIG. 3. Singular value decomposition when the model is described as a superposition of 6 x 4 homogeneous isotropic squared
regions (2-D isotropic). The amount oflateral variation in the model space increases as the size of the singular values decreases.
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SVD for Cross-well Tomography 1659

lution overall than the one obtained by directly estimating
the parameters of a I-D model. Of course, if well logs are
available and the medium is known to be isotropic and
horizontally layered, 1-D inversions are not interesting, and
the intrinsic advantages of the parameterization (fewer un
knowns and better conditioning) are not useful. However, as
the next section shows, if the medium is anisotropic and
known to be horizontally layered, using a model of hetero
geneities that appropriately incorporates such prior informa
tion can make the difference between retrieving or not
(accurately) variations of velocity as a function of direction.

The large number of data singular vectors u contained in
the null space in Figure 2 also suggests that, if the mediumis
known to be isotropic and horizontally layered, the data
acquisition can be optimized to increase the number of
measurements that influence the solution, which results in a
better estimation of the velocities.

Anisotropic models

The SVD for a I-D anisotropic parameterization [equation
(4)] is shown in Figure 4. The upper half of each eigenvector
in model space corresponds to Sx(x, z), the lower half to
Sz(x, z). As expected, the largest singular values corre
spond to gross features in both model and data space. In
descending order of singular value, the corresponding singu
lar vectors in data space first span Sx(x, z), then Sz(x, z).
The least sensitive part of the model (singular values II and
12) is spanned by vectors that contain only information
about Sz(x, z). In data space, the behavior for the largest
singular values is similar to the isotropic I-D case.

...-
0

Otl • • • • • • • •rJl 0 • •.....
::l

Otl
~

I...-
~ (.oJ
'"S

<:
~ I...-
c Ci.l • •(b

1 2 3 4 5 6 7 8 9 10 11 12
singular value #

s

Figure 5 shows the SVD when the model is 2-D anisotro
pic. The result for this parameterization is roughly a combi
nation of the SVD for the 2-D isotropic and the I-D aniso
tropic model (Figures 3 and 4 respectively); that is, vertical
variations in Sx (x, z) correspond to the largest singular
values and horizontal and high-frequency variations in Sz(x,

z) to the smallest ones. Nearly half the vectors in the null
space (Figure 6) contain information about Sz(x, z) only,
and the other half contain information about both Sx(x, z)
and Sz(x, z). These vectors cannot be estimated from the
data.

Figures 4, 5, and 6 show that when we introduce anisot
ropy in the model, the sensitivity of the data to the vertical
component of the slowness is lower than the sensitivity to
the horizontal component, which is not a surprise for cross
well geometries that don't adequately sample the vertical
direction. This limitation, however, doesn't impede an ac
curate estimation of variations of velocity anisotropy with
position if we use the proper model to describe the hetero
geneities at the same time, as shown in Figure 4, where most
singular vectors in model space correspond to large singular
values.

When using a model that assumes nothing about the
heterogeneities (square pixels), estimating spatial variations
in slowness anisotropy may become a very difficult task
because we have to deal with the features of the medium
about which the data give less information: horizontal and
high-frequency variations in the vertical component of the
slowness. Even if the inversion can retrieve the singular
vectors corresponding to the smallest singular values, the

x

N

N

FIG. 4. Singular value decomposition when the model is horizontally layered and anisotropic (6 x 2 model parameters). The
upper half of each image in the model space corresponds to Sx(x, z), and the lower half corresponds to Sz(x, z). The origin
in the data space is at the upper left corner of each image.
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1660 Michelena

result can still be images with different resolutions for the
horizontal and the vertical components of slowness because
most vectors in the null space are related to the vertical
component (Figure 6).

For these reasons, performing 2-D inversions in places
known to be I-D may create serious problems, in particular
when the model is anisotropic. From Figure 4 we see that all
variations in Sx (x, z) can be retrieved from the data because
the smallest singular values are related to Sz(x, z) only.
However, when we allow 2-D variations in the model,
several components of SAx, z) go to the null space, as
Figure 6 shows. This fact has two implications. First,
features that could be easily recovered with one parameter
ization have become more difficultor impossible to recover
with another parameterization that is more general. Second,
taking I-D averages or smoothing 2-D images across the
horizontal direction is not necessarily the same as perform
ing true I-D inversions, because the 2-D images may be less
accurate and contain more artifacts than the images obtained
using I-D parameterizations.

When the velocity model is isotropic, a common way to
deal with the noise and ill-conditioning when solving the
system (1) is by damping the least-squares solution or by
truncating the SVD. The purpose ofthese two techniques is
to attenuate or eliminate the effect of the smallest singular
values of the problem. When the model is isotropic, damping
translates into smoothing because what is being attenuated
are the high-frequency and horizontal variations in the
model. However, when the velocity model is anisotropic,
damping out the smallest singular values affects not only the
smoothness of the model but also its anisotropy (or isotropy)
because the effect of the vertical component of the slowness
compared with the horizontal has also been reduced. There
fore, common techniques used to regularize the problem in
isotropic media may not be adequate in anisotropic media
because they may introduce artificial anisotropy.

Besides damped least-squares or SVD truncation, conju
gate gradients (CG) is another common way to solve the
system (1). In practice, if the data energy distribution among
the different singular values is even, early CG iterations tend

-0
(JQ • • • • • • • • • • • • •rn 0 * * • * * • * *....... * * •::::l *(JQ

~
I-Pl C.J

"'$

<:
Pl

I-~ 0)
Cb

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
singular value #

x

N

N

FIG. 5. Singular value decomposition when the model is 2-D anisotropic (24 x 2 model parameters).

x

N

N

FIG. 6. Vectors that span the null space of the model for the SVD shown in Figure 5. Most vectors contain information about
Sz(x, z] (nonzero components in the lower half of each image), and therefore, Sz(x, z) cannot be estimated at the same
resolution of SAx, z) from cross-well traveltimes alone.
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SVD for Cross-well Tomography 1661

to be more sensitive to the largest singular values, whereas
later iterations tend to be affected by both large and small
singular values (Stork, 1988). For this reason, stopping the
CG iterations after a small number of steps is similar to the
effect of damping or of truncating the SVD (Scales and
Gersztenkom, 1988). As a consequence, when the model is
anisotropic, early truncation of the CG iterations may also
produce artificially anisotropic results because the horizon
tal component of the slowness converges faster than the
vertical, which belongs to the less sensitive part of the
model. Michelena et aL (1993) show examples of how the
two components of the slowness converge at different
speeds. Early truncation of the iterations may be necessary
because of noise or ill-conditioning.

The effect of damping can also be seen in data space. On
the one hand, when the damping is large, only gross features
in data spaced are resolved. On the other hand, when the
damping is small or zero, the high-frequency variations in
the data that correspond to the smallest singular values can
also be resolved. Therefore, depending on the amount of
damping (or, equivalently, where the SVD solution is trun
cated or when the CG iterations are terminated) some
portions of the data may be better resolved than others,
which has to be taken into account when interpreting trav
eltime residuals.

CONCLUSIONS

By performing the SVD of the matrices that result from a
small scale numerical experiment, I have shown the relations
between data and model space for four different parameter
izations. The parameterizations vary according to the
amount of prior information that they contain about the
medium.

All the results have in common that the largest singular
values correspond to gross features in both data and model
space. The main differences among the results are in the type
of feature in data and model space that the small singular
values represent, the size of the null space, and the effect of
regularization when dealing with such insensitive parts of the
data and the model. When the model is I-D isotropic, the
problem is well conditioned and all the parameters can be
resolved well but the resolution of the data is poor. For this
type of model, cross-well traveltime tomography performs
the best if the medium is also I-D isotropic.

I have generalized the I-D isotropic model in three ways:
by allowing the layers to vary lateraly, to be anisotropic, and
to be both heterogeneous and anisotropic. The effect of
lateral heterogeneities in the data was negligible even when
the problem was overdetermined. Lateral heterogeneities
also introduced into the model high-frequency variations
whose influence in the inversion needs to be attenuated. The
effect of anisotropy in 1-D was to introduce structures in the
vertical component of the slowness that are not sensitive to
the data. Most other vertical variations. however, can still be

easily retrieved. The effect of lateral variations and anisot
ropy in the parameterization was to create a large null space
in the model related mostly to horizontal and high-frequency
variations in the vertical component of the slowness. This
means that when 2-D anisotropic models are used anisotropy
and heterogeneity cannot be estimated with the same reso
lution, no matter how simple the real medium is. Hence the
importance of using the appropriate parameterization when
information about the medium is available beforehand.

Since the singular value distribution is different for the
different parameterizations, the effect of conventional regu
larization procedures such as damping, SVD truncation, or a
simple early termination of CG iterations is also different
when each of these parameterizations is used. When the
model is isotropic, regularization translates into smoothness
in the resolution of both data and model spaces. When the
model is anisotropic, diminishing the effect of the smallest
singular values in the solution not only creates smoother
images but may also introduce anisotropy where it doesn't
actually exist or, more generally, may distort the anisotropy
of the medium.
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